메뉴 건너뛰기




Volumn 537, Issue 1-2, 2005, Pages 331-338

Comparing radial basis function and feed-forward neural networks assisted by linear discriminant or principal component analysis for simultaneous spectrophotometric quantification of mercury and copper

Author keywords

Artificial neural networks; Linear discriminant analysis; Metal ions; PCA; Spectrophotometry

Indexed keywords

CALIBRATION; COPPER; FEEDFORWARD NEURAL NETWORKS; LINEAR SYSTEMS; MATHEMATICAL MODELS; MERCURY (METAL); PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; SPECTROPHOTOMETRY;

EID: 17044404602     PISSN: 00032670     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aca.2004.12.079     Document Type: Article
Times cited : (32)

References (33)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.