|
Volumn 537, Issue 1-2, 2005, Pages 331-338
|
Comparing radial basis function and feed-forward neural networks assisted by linear discriminant or principal component analysis for simultaneous spectrophotometric quantification of mercury and copper
|
Author keywords
Artificial neural networks; Linear discriminant analysis; Metal ions; PCA; Spectrophotometry
|
Indexed keywords
CALIBRATION;
COPPER;
FEEDFORWARD NEURAL NETWORKS;
LINEAR SYSTEMS;
MATHEMATICAL MODELS;
MERCURY (METAL);
PRINCIPAL COMPONENT ANALYSIS;
RADIAL BASIS FUNCTION NETWORKS;
SPECTROPHOTOMETRY;
CALIBRATION MODELS;
CHROMOGENIC REAGENT;
DATA SETS;
LINEAR DISCRIMINANT ANALYSIS (LDA);
METAL ANALYSIS;
COPPER;
MERCURY;
ABSORPTION SPECTROSCOPY;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
COMPARATIVE STUDY;
DISCRIMINANT ANALYSIS;
PREDICTION;
PRINCIPAL COMPONENT ANALYSIS;
PRIORITY JOURNAL;
QUANTITATIVE ANALYSIS;
RANDOMIZATION;
SPECTROPHOTOMETRY;
|
EID: 17044404602
PISSN: 00032670
EISSN: None
Source Type: Journal
DOI: 10.1016/j.aca.2004.12.079 Document Type: Article |
Times cited : (32)
|
References (33)
|