-
4
-
-
24544460884
-
-
A. Benyagoub, S. Löffler, M. Rammensee, S. Klaumünzer, and G. Saemann-Ischenko, Nucl. Instrum. Methods Phys. Res. B 65, 228 (1992).
-
(1992)
Nucl. Instrum. Methods Phys. Res. B
, vol.65
, pp. 228
-
-
Benyagoub, A.1
Löffler, S.2
Rammensee, M.3
Klaumünzer, S.4
Saemann-Ischenko, G.5
-
5
-
-
0000979808
-
-
A. Audouard, J. Dural, M. Toulemonde, A. Lovas, G. Szenes, and L. Thomé, Phys. Rev. B 54, 15 690 (1996).
-
(1996)
Phys. Rev. B
, vol.54
-
-
Audouard, A.1
Dural, J.2
Toulemonde, M.3
Lovas, A.4
Szenes, G.5
Thomé, L.6
-
6
-
-
0034297793
-
-
E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, M. L. Brongersma, and A. Polman, Adv. Mater. (Weinheim, Ger.) 12, 1511 (2000).
-
(2000)
Adv. Mater. (Weinheim, Ger.)
, vol.12
, pp. 1511
-
-
Snoeks, E.1
Van Blaaderen, A.2
Van Dillen, T.3
Van Kats, C.M.4
Brongersma, M.L.5
Polman, A.6
-
7
-
-
0346885943
-
-
T. van Dillen, A. Polman, C. M. van Kats, and A. van Blaaderen, Appl. Phys. Lett. 83, 4315 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 4315
-
-
Van Dillen, T.1
Polman, A.2
Van Kats, C.M.3
Van Blaaderen, A.4
-
8
-
-
0004885182
-
-
T. van Dillen, A. Polman, W. Fukarek, and A. van Blaaderen, Appl. Phys. Lett. 78, 910 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 910
-
-
Van Dillen, T.1
Polman, A.2
Fukarek, W.3
Van Blaaderen, A.4
-
9
-
-
0035333186
-
-
E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, K. Velikov, M. L. Brongersma, and A. Polman, Nucl. Instrum. Methods Phys. Res. B 178, 62 (2001).
-
(2001)
Nucl. Instrum. Methods Phys. Res. B
, vol.178
, pp. 62
-
-
Snoeks, E.1
Van Blaaderen, A.2
Van Dillen, T.3
Van Kats, C.M.4
Velikov, K.5
Brongersma, M.L.6
Polman, A.7
-
10
-
-
79956041765
-
-
K. P. Velikov, T. van Dillen, A. Polman, and A. van Blaaderen, Appl. Phys. Lett. 81, 838 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 838
-
-
Velikov, K.P.1
Van Dillen, T.2
Polman, A.3
Van Blaaderen, A.4
-
17
-
-
0033729186
-
-
M. Toulemonde, Ch. Dufour, A. Meftah, and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166-167, 903 (2000).
-
(2000)
Nucl. Instrum. Methods Phys. Res. B
, vol.166-167
, pp. 903
-
-
Toulemonde, M.1
Dufour, Ch.2
Meftah, A.3
Paumier, E.4
-
18
-
-
0032663640
-
-
M. Toulemonde, C. Dufour, E. Paumier, and F. Pawlak, Mater. Res. Soc. Symp. Proc. 504, 99 (1999).
-
(1999)
Mater. Res. Soc. Symp. Proc.
, vol.504
, pp. 99
-
-
Toulemonde, M.1
Dufour, C.2
Paumier, E.3
Pawlak, F.4
-
19
-
-
0030563237
-
-
M. Toulemonde, Ch. Dufour, Z. Wang, and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 112, 26 (1996).
-
(1996)
Nucl. Instrum. Methods Phys. Res. B
, vol.112
, pp. 26
-
-
Toulemonde, M.1
Dufour, Ch.2
Wang, Z.3
Paumier, E.4
-
20
-
-
0030219273
-
-
M. Toulemonde, J. M. Costantini, Ch. Dufour, A. Meftah, E. Paumier, and F. Studer, Nucl. Instrum. Methods Phys. Res. B 116, 37 (1996).
-
(1996)
Nucl. Instrum. Methods Phys. Res. B
, vol.116
, pp. 37
-
-
Toulemonde, M.1
Costantini, J.M.2
Dufour, Ch.3
Meftah, A.4
Paumier, E.5
Studer, F.6
-
21
-
-
16844376326
-
-
note
-
0 (see Sec. V). It is therefore reasonable to assume a constant temperature distribution in the ion track to estimate the local (viscous) deformations. The actual local track temperature T(r;t) should in this case be integrated over space and time to yield the average, "uniform" temperature in the ion track determining the local viscous deformation (see Sec. VI and Appendix B).
-
-
-
-
25
-
-
16844366113
-
-
note
-
θz) vanish due to symmetry (Sec. IIII), while the deviatoric stresses do not. However, shear stresses do exist, albeit on coordinate axes that are rotated with respect to the cylindrical coordinate axes used here.
-
-
-
-
26
-
-
0004032085
-
-
Prentice-Hall PTR, Englewood Cliffs, NJ
-
A. C. Ugural and S. K. Fenster, Advanced Strength and Applied Elasticity, 3rd ed. (Prentice-Hall PTR, Englewood Cliffs, NJ, 1995).
-
(1995)
Advanced Strength and Applied Elasticity, 3rd Ed.
-
-
Ugural, A.C.1
Fenster, S.K.2
-
27
-
-
16844378329
-
-
note
-
To calculate the strains for a
-
-
-
-
28
-
-
16844364222
-
-
note
-
See, e.g., Eq. (5.8) for vitreous silica.
-
-
-
-
29
-
-
16844378765
-
-
note
-
The quantity ψ cancels out in normalizing Eqs. (4.10), (4.12), and (4.14).
-
-
-
-
30
-
-
16844376586
-
-
note
-
0]), still gives a lower limit estimate for the reduced viscous strains in ion tracks close to the edge.
-
-
-
-
33
-
-
16844381783
-
-
note
-
This is not the case for the example plotted in Fig. 3(d), as can be seen from the associated in-plane viscous strain plotted in Fig. 3(c) (dotted line).
-
-
-
-
34
-
-
16844374342
-
-
note
-
Independent ion tracks are ion tracks that do not overlap and do not "feel" each other's stress field.
-
-
-
-
35
-
-
16844385175
-
-
note
-
This suggests that on average each ion can be viewed to have its impact at the center of the sample having a distance b to the edge (provided that b is not too close to a).
-
-
-
-
37
-
-
16844365827
-
-
note
-
The value of the average depends on how the average is taken. Our result is slightly different from the one found by Trinkaus and Ryazanov (Ref. 11).
-
-
-
|