메뉴 건너뛰기




Volumn 30, Issue 6, 2003, Pages 879-883

Classification of Protein Homo-oligomers Using Support Vector Machine

Author keywords

Bayes covariant discriminant; Classification; Homo dimer; Homo hexamer; Homo tetramer; Homo trimer; Support vector machine

Indexed keywords

DIMER; OLIGOMER; PROTEIN; TETRAMER;

EID: 1642534306     PISSN: 10003282     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (21)
  • 1
    • 0034954937 scopus 로고    scopus 로고
    • Prediction of quaternary structure from primary structure
    • Garian R. Prediction of quaternary structure from primary structure. Bioinformatics, 2001, 17 (6) : 551-556
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 551-556
    • Garian, R.1
  • 4
    • 0032501152 scopus 로고    scopus 로고
    • Using discriminant function for prediction of subcellular location of prokaryotic proteins
    • Chou K C, Elrod D W. Using discriminant function for prediction of subcellular location of prokaryotic proteins. Biochem Biophys Res Commun, 1998, 252 (1) : 63-68
    • (1998) Biochem Biophys Res Commun , vol.252 , Issue.1 , pp. 63-68
    • Chou, K.C.1    Elrod, D.W.2
  • 5
    • 0032940342 scopus 로고    scopus 로고
    • Protein subcellular location prediction
    • Chou K C, Elrod D W. Protein subcellular location prediction. Protein Eng, 1999, 12 (2) : 107-108
    • (1999) Protein Eng , vol.12 , Issue.2 , pp. 107-108
    • Chou, K.C.1    Elrod, D.W.2
  • 6
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown M, Grundy W, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA, 2000, 97 (1) : 262-267
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.1    Grundy, W.2    Lin, D.3
  • 8
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien A, Ratsch G, Mika S, et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 2000, 16 (9) : 799-807
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zien, A.1    Ratsch, G.2    Mika, S.3
  • 9
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S J, Sun Z R. Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 2001, 17 (8) : 721-728
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.J.1    Sun, Z.R.2
  • 10
    • 0034436969 scopus 로고    scopus 로고
    • Support vector machines for prediction of protein subcellular location
    • Cai Y D, Liu X J, Xu X B, et al. Support vector machines for prediction of protein subcellular location. Mol Cell Biol Res Commun, 2000, 4 (4) : 230-233
    • (2000) Mol Cell Biol Res Commun , vol.4 , Issue.4 , pp. 230-233
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3
  • 11
    • 0035672036 scopus 로고    scopus 로고
    • Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect
    • Cai Y D, Liu X J, Xu X B, et al. Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect. J Cell Biochem, 2002, 84 (2) : 343-348
    • (2002) J Cell Biochem , vol.84 , Issue.2 , pp. 343-348
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3
  • 12
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C H Q, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 2001, 17 (4) : 349-358
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 14
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practiceal
    • Scholkopf B, Burges C, Smola A, eds. Cambridge, MA: MIT Press
    • Joachims T. Making large-scale SVM learning practiceal. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-support Vector Learning. Cambridge, MA: MIT Press, 1999. 1-376
    • (1999) Advances in Kernel Methods-support Vector Learning , pp. 1-376
    • Joachims, T.1
  • 15
    • 0022631926 scopus 로고
    • The folding type of a protein is relevant to the amino acid composition
    • Nakashima H, Nishikawa K, Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem, 1986, 99 (1) : 153-62
    • (1986) J Biochem , vol.99 , Issue.1 , pp. 153-162
    • Nakashima, H.1    Nishikawa, K.2    Ooi, T.3
  • 16
    • 0023054768 scopus 로고
    • Prediction of protein structural class by discriminat analysis
    • Klein P. Prediction of protein structural class by discriminat analysis. Biochem Biophys Acta, 1986, 874 (2) : 205-275
    • (1986) Biochem Biophys Acta , vol.874 , Issue.2 , pp. 205-275
    • Klein, P.1
  • 17
    • 0031928664 scopus 로고    scopus 로고
    • Domain structure prediction
    • Chou K C, Maggiora G M. Domain structure prediction. Protein Eng, 1998, 11 (7) : 523-538
    • (1998) Protein Eng , vol.11 , Issue.7 , pp. 523-538
    • Chou, K.C.1    Maggiora, G.M.2
  • 18
    • 0033554601 scopus 로고    scopus 로고
    • A key driving force in determination of protein structural classes
    • Chou K C. A key driving force in determination of protein structural classes. Biochem Biophys Res Commun, 1999, 264 (1) : 216-224
    • (1999) Biochem Biophys Res Commun , vol.264 , Issue.1 , pp. 216-224
    • Chou, K.C.1
  • 19
    • 0027291015 scopus 로고
    • Prediction of secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of secondary structure at better than 70% accuracy. J Mol Biol, 1993, 232 (2) : 584-599
    • (1993) J Mol Biol , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 20
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res, 1998, 26 (9) : 2230-2236
    • (1998) Nucleic Acids Res , vol.26 , Issue.9 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 21
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300 (4) : 1005-1016
    • (2000) J Mol Biol , vol.300 , Issue.4 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.