-
3
-
-
17444438778
-
New support vector algorithms
-
SCHOLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms [J]. Neural Computation, 2000, 12(5): 1207-1245.
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Scholkoph, B.1
Smola, A.J.2
Bartlett, P.L.3
-
4
-
-
0032638628
-
Least squares support vector machine classifiers
-
SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewale, J.2
-
5
-
-
0034848699
-
Dual v-support vector machine with error rate and training size beasing
-
Salt Lake City, USA: IEEE
-
CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing [A]. Proceedings of 2001 IEEE Int Conf on Acoustics, Speech, and Signal Processing [C]. Salt Lake City, USA: IEEE, 2001. 1269-1272.
-
(2001)
Proceedings of 2001 IEEE Int. Conf on Acoustics, Speech, and Signal Processing
, pp. 1269-1272
-
-
Chew, H.-G.1
Bogner, R.E.2
Lim, C.-C.3
-
7
-
-
0036825528
-
Weighted least squares support vector machines: robustness and spare approximation
-
SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
-
(2002)
Neurocomputing
, vol.48
, Issue.1
, pp. 85-105
-
-
Suykens, J.A.K.1
Branbanter, J.D.2
Lukas, L.3
-
8
-
-
0034510486
-
DirectSVM: A fast and simple support vector machine perception
-
Sydney, Australia: IEEE
-
ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop [C]. Sydney, Australia: IEEE, 2000. 356-365.
-
(2000)
Proceedings of IEEE Signal Processing Society Workshop
, pp. 356-365
-
-
Roobaert, D.1
-
11
-
-
0002714543
-
Making large-scale SVM learning practical
-
Scholkoph B., Cambridge, MA: MIT Press
-
JOACHIMS T. Making large-scale SVM learning practical [A]. SCHOLKOPH B, Advances in Kernel Method-Support Vector Learning [C]. Cambridge, MA: MIT Press, 1999. 169-184.
-
(1999)
Advances in Kernel Method-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
12
-
-
0036158636
-
Feasible direction decomposition algorithms for training support vector machines
-
LASKOV P. Feasible direction decomposition algorithms for training support vector machines [J]. Machine Learning, 2002, 46(1): 315-349.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 315-349
-
-
Laskov, P.1
-
13
-
-
0036158552
-
A simple decomposition method for support vector machines
-
HSU C-W, LIN C-J. A simple decomposition method for support vector machines [J]. Machine Learning, 2002, 46(1): 291-314.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 291-314
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
14
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
LIN C-J. On the convergence of the decomposition method for support vector machines [J]. IEEE Trans on Neural Networks, 2001, 12(6): 1288-1298.
-
(2001)
IEEE Trans. on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.-J.1
-
15
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Scholkoph B.(ed.), Cambridge, MA: MIT Press
-
PLATT J C. Fast training of support vector machines using sequential minimal optimization [A]. SCHOLKOPH B, et al eds. Advances in Kernel Method-Support Vector Learning [C]. Cambridge, MA: MIT Press, 1999. 185-208.
-
(1999)
Advances in Kernel Method-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
16
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
KEERTHI S S, GILBERT E G. Convergence of a generalized SMO algorithm for SVM classifier design [J]. Machine Learning, 2002, 46(1): 351-360.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
17
-
-
84951865382
-
KMOD-a new support vector machine kernel with moderate decreasing for pattern recognition, application to digit image recognition
-
Seattle, USA: IEEE
-
AYAT N E, CHERIET M, REMAKI L, et al. KMOD-a new support vector machine kernel with moderate decreasing for pattern recognition, application to digit image recognition [A]. Proceedings of 6th Int Conf on Document Analysis and Recognition [C]. Seattle, USA: IEEE, 2001. 1215-1211.
-
(2001)
Proceedings of 6th Int. Conf. on Document Analysis and Recognition
, pp. 1215-1211
-
-
Ayat, N.E.1
Cheriet, M.2
Remaki, L.3
-
18
-
-
0033357556
-
An information-geometrical method for improving the performance of support vector machine classifier
-
Edinburgh, UK: IEEE
-
AMARI S-I, WU S. An information-geometrical method for improving the performance of support vector machine classifier [A]. Proceedings of 9th Int Conf on Artificial Neural Networks [C]. Edinburgh, UK: IEEE, 1999. 85-90.
-
(1999)
Proceedings of 9th Int. Conf. on Artificial Neural Networks
, pp. 85-90
-
-
Amari, S.-I.1
Wu, S.2
-
19
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
CHAPELLE O, VAPNIK V, BACSQUEST O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-159.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bacsquest, O.3
-
20
-
-
0033646059
-
An empirical assessment for kernel type performance for least squares support vector machine classifiers
-
Brighton, UK: IEEE
-
BAESENS B, VIAENE S, GESTEL T V, et al. An empirical assessment for kernel type performance for least squares support vector machine classifiers [A]. Proceedings of 4th Int Conf on Knowledge-based Intelligent Engineering Systems and Allied Technologies [C]. Brighton, UK: IEEE, 2000. 313-316.
-
(2000)
Proceedings of 4th Int. Conf. on Knowledge-based Intelligent Engineering Systems and Allied Technologies
, pp. 313-316
-
-
Baesens, B.1
Viaene, S.2
Gestel, T.V.3
-
21
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
HSU C-W, LIN C-J. A comparison of methods for multiclass support vector machines [J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
22
-
-
0035503160
-
Support vector machines and the multiple hypothesis test problem
-
SEBALD D J, BUCHLEW J A. Support vector machines and the multiple hypothesis test problem [J]. IEEE Trans on Signal Processing, 2001, 49(11): 2865-2872.
-
(2001)
IEEE Trans. on Signal Processing
, vol.49
, Issue.11
, pp. 2865-2872
-
-
Sebald, D.J.1
Buchlew, J.A.2
|