메뉴 건너뛰기




Volumn 20, Issue 3, 2004, Pages 465-473

Application of the Kurganov-Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms

Author keywords

Hyperbolic systems; Semi discrete scheme; Shock capturing

Indexed keywords

COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; DISCRETE TIME CONTROL SYSTEMS; NONLINEAR EQUATIONS; NONLINEAR SYSTEMS; RUNGE KUTTA METHODS;

EID: 1642365573     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2003.07.010     Document Type: Conference Paper
Times cited : (14)

References (10)
  • 1
    • 28144455569 scopus 로고
    • Non-oscillatory central differencing for hyperbolic conservation laws
    • Nessyahu H., Tadmor E., Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87:1990;408-463.
    • (1990) J. Comput. Phys. , vol.87 , pp. 408-463
    • Nessyahu, H.1    Tadmor, E.2
  • 2
    • 0347987814 scopus 로고    scopus 로고
    • New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
    • Kurganov A., Tadmor E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160:2000;241-282.
    • (2000) J. Comput. Phys. , vol.160 , pp. 241-282
    • Kurganov, A.1    Tadmor, E.2
  • 3
    • 0034879339 scopus 로고    scopus 로고
    • A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations
    • Kurganov A., Levy D., A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22:2000;1461-1488.
    • (2000) SIAM J. Sci. Comput. , vol.22 , pp. 1461-1488
    • Kurganov, A.1    Levy, D.2
  • 4
    • 85069028723 scopus 로고    scopus 로고
    • Numerical integration of the plasma fluid equations with a non-staggered modification of the second-order Nessyahu-Tadmor central scheme and soliton modelling
    • Special Issue on Nonlinear Waves, submitted
    • R. Naidoo, S. Baboolal, Numerical integration of the plasma fluid equations with a non-staggered modification of the second-order Nessyahu-Tadmor central scheme and soliton modelling, Math. Comput. Simul., Special Issue on Nonlinear Waves, submitted.
    • Math. Comput. Simul.
    • Naidoo, R.1    Baboolal, S.2
  • 5
    • 0000238594 scopus 로고    scopus 로고
    • High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws
    • Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E., High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35:1998;2147-2168.
    • (1998) SIAM J. Numer. Anal. , vol.35 , pp. 2147-2168
    • Jiang, G.-S.1    Levy, D.2    Lin, C.-T.3    Osher, S.4    Tadmor, E.5
  • 6
    • 0001407297 scopus 로고    scopus 로고
    • Uniformly accurate schemes for hyperbolic systems with relaxation
    • Caflisch R.E., Jin S., Russo G., Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34:1997;246-281.
    • (1997) SIAM J. Numer. Anal. , vol.34 , pp. 246-281
    • Caflisch, R.E.1    Jin, S.2    Russo, G.3
  • 7
    • 0001862602 scopus 로고
    • Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms
    • Jin S., Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122:1995;51-67.
    • (1995) J. Comput. Phys. , vol.122 , pp. 51-67
    • Jin, S.1
  • 9
    • 0000287554 scopus 로고    scopus 로고
    • Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation
    • Naldi G., Pareschi L., Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37:2000;1246-1270.
    • (2000) SIAM J. Numer. Anal. , vol.37 , pp. 1246-1270
    • Naldi, G.1    Pareschi, L.2
  • 10
    • 0000417595 scopus 로고
    • Numerical methods for hyperbolic conservation laws with stiff relaxation. II. Higher-order Godunov methods
    • Pember R.B., Numerical methods for hyperbolic conservation laws with stiff relaxation. II. Higher-order Godunov methods. SIAM J. Sci. Comput. 14:1993;824-829.
    • (1993) SIAM J. Sci. Comput. , vol.14 , pp. 824-829
    • Pember, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.