-
1
-
-
28144455569
-
Non-oscillatory central differencing for hyperbolic conservation laws
-
Nessyahu H., Tadmor E., Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87:1990;408-463.
-
(1990)
J. Comput. Phys.
, vol.87
, pp. 408-463
-
-
Nessyahu, H.1
Tadmor, E.2
-
2
-
-
0347987814
-
New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations
-
Kurganov A., Tadmor E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160:2000;241-282.
-
(2000)
J. Comput. Phys.
, vol.160
, pp. 241-282
-
-
Kurganov, A.1
Tadmor, E.2
-
3
-
-
0034879339
-
A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations
-
Kurganov A., Levy D., A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22:2000;1461-1488.
-
(2000)
SIAM J. Sci. Comput.
, vol.22
, pp. 1461-1488
-
-
Kurganov, A.1
Levy, D.2
-
4
-
-
85069028723
-
Numerical integration of the plasma fluid equations with a non-staggered modification of the second-order Nessyahu-Tadmor central scheme and soliton modelling
-
Special Issue on Nonlinear Waves, submitted
-
R. Naidoo, S. Baboolal, Numerical integration of the plasma fluid equations with a non-staggered modification of the second-order Nessyahu-Tadmor central scheme and soliton modelling, Math. Comput. Simul., Special Issue on Nonlinear Waves, submitted.
-
Math. Comput. Simul.
-
-
Naidoo, R.1
Baboolal, S.2
-
5
-
-
0000238594
-
High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws
-
Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E., High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35:1998;2147-2168.
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, pp. 2147-2168
-
-
Jiang, G.-S.1
Levy, D.2
Lin, C.-T.3
Osher, S.4
Tadmor, E.5
-
6
-
-
0001407297
-
Uniformly accurate schemes for hyperbolic systems with relaxation
-
Caflisch R.E., Jin S., Russo G., Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34:1997;246-281.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 246-281
-
-
Caflisch, R.E.1
Jin, S.2
Russo, G.3
-
7
-
-
0001862602
-
Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms
-
Jin S., Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122:1995;51-67.
-
(1995)
J. Comput. Phys.
, vol.122
, pp. 51-67
-
-
Jin, S.1
-
9
-
-
0000287554
-
Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation
-
Naldi G., Pareschi L., Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37:2000;1246-1270.
-
(2000)
SIAM J. Numer. Anal.
, vol.37
, pp. 1246-1270
-
-
Naldi, G.1
Pareschi, L.2
-
10
-
-
0000417595
-
Numerical methods for hyperbolic conservation laws with stiff relaxation. II. Higher-order Godunov methods
-
Pember R.B., Numerical methods for hyperbolic conservation laws with stiff relaxation. II. Higher-order Godunov methods. SIAM J. Sci. Comput. 14:1993;824-829.
-
(1993)
SIAM J. Sci. Comput.
, vol.14
, pp. 824-829
-
-
Pember, R.B.1
|