-
1
-
-
0001884854
-
A two-dimensional finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for compressible flow
-
M. Hafez, ed.
-
P. ARMINIJON, D. STANESCU, AND M.-C. VIALLON, A two-dimensional finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for compressible flow, in Proc. 6th Int. Sympos. on CFD, Lake Tahoe, vol. 4, M. Hafez, ed., 1995, pp. 7-14.
-
(1995)
Proc. 6th Int. Sympos. on CFD, Lake Tahoe
, vol.4
, pp. 7-14
-
-
Arminijon, P.1
Stanescu, D.2
Viallon, M.-C.3
-
2
-
-
0001380483
-
Systems of conservation equations with a convex extension
-
K. O. FRIEDRICHS AND P. D, LAX, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), pp. 1686-1688.
-
(1971)
Proc. Nat. Acad. Sci. U.S.A.
, vol.68
, pp. 1686-1688
-
-
Friedrichs, K.O.1
Lax, P.D.2
-
3
-
-
0000935266
-
A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics
-
S. K. GODUNOV, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), pp. 271-290.
-
(1959)
Mat. Sb.
, vol.47
, pp. 271-290
-
-
Godunov, S.K.1
-
4
-
-
0001082359
-
Hyperbolic Systems of Conservation Laws
-
Ellipses, Paris
-
E. GODLEWSKI AND P.-A. RAVIART, Hyperbolic Systems of Conservation Laws, Mathematics Appl., Ellipses, Paris, 1991.
-
(1991)
Mathematics Appl.
-
-
Godlewski, E.1
Raviart, P.-A.2
-
5
-
-
40749159424
-
High resolution schemes for hyperbolic conservation laws
-
A. HARTEN, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49 (1983), pp. 357-393.
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 357-393
-
-
Harten, A.1
-
6
-
-
0023329384
-
Uniformly high order accurate nonoscillatory schemes. I
-
A. HARTEN AND S. OSHER, Uniformly high order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal., 24 (1982), pp. 279-309.
-
(1982)
SIAM J. Numer. Anal.
, vol.24
, pp. 279-309
-
-
Harten, A.1
Osher, S.2
-
7
-
-
84983109360
-
A piecewise-parabolic dual-mesh method for the Euler equations
-
AIAA-95-1739- CP
-
H. T. HUYNH, A piecewise-parabolic dual-mesh method for the Euler equations, AIAA-95-1739- CP, in 12th AIAA CFD Conf., 1995.
-
(1995)
12th AIAA CFD Conf.
-
-
Huynh, H.T.1
-
8
-
-
0030161771
-
Efficient implementation of weighted ENO schemes
-
G.-S. JIANG AND C.-W. SHU, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202-228.
-
(1996)
J. Comput. Phys.
, vol.126
, pp. 202-228
-
-
Jiang, G.-S.1
Shu, C.-W.2
-
9
-
-
0032206542
-
Nonoscillatory central schemes for multidimensional hyperbolic conservation laws
-
G.-S. JIANG AND E. TADMOR, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892-1917.
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, pp. 1892-1917
-
-
Jiang, G.-S.1
Tadmor, E.2
-
10
-
-
0032226451
-
A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme
-
R. KUPFERMAN, A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme, SIAM J. Sci. Comput., 20 (1998), pp. 858- 877.
-
(1998)
SIAM J. Sci. Comput.
, vol.20
, pp. 858-877
-
-
Kupferman, R.1
-
11
-
-
0031008396
-
A fast high-resolution second-order central scheme for incompressible flows
-
R. KUPFERMAN AND E. TADMOR, A fast high-resolution second-order central scheme for incompressible flows, Proc. Nat. Acad. Sci. U.S.A., 94 (1997), pp. 4848-4852.
-
(1997)
Proc. Nat. Acad. Sci. U.S.A.
, vol.94
, pp. 4848-4852
-
-
Kupferman, R.1
Tadmor, E.2
-
12
-
-
84980078953
-
Weak solutions of non-nonlinear hyperbolic equations and their numerical computations
-
P. D. LAX, Weak solutions of non-nonlinear hyperbolic equations and their numerical computations, Comm. Pure Appl. Math., 7 (1954), pp. 159-193.
-
(1954)
Comm. Pure Appl. Math.
, vol.7
, pp. 159-193
-
-
Lax, P.D.1
-
13
-
-
2442433925
-
Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method
-
B. VAN LEER, Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method, J. Comput. Phys., 32 (1979), pp. 101-136.
-
(1979)
J. Comput. Phys.
, vol.32
, pp. 101-136
-
-
Van Leer, B.1
-
14
-
-
0000314925
-
High-resolution conservative algorithms for advection in incompressible flow
-
R. J. LEVEQUE, High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal., 33 (1996), pp. 627-665.
-
(1996)
SIAM J. Numer. Anal.
, vol.33
, pp. 627-665
-
-
Leveque, R.J.1
-
15
-
-
0003294239
-
Numerical Methods for Conservation Laws
-
Birkhauser Verlag, Basel
-
R. J. LEVEQUE, Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhauser Verlag, Basel, 1992.
-
(1992)
Lectures in Mathematics
-
-
Leveque, R.J.1
-
17
-
-
0031287205
-
Non-oscillatory central schemes for the incompressible 2-D Euler equations
-
D. LEVY AND E. TADMOR, Non-oscillatory central schemes for the incompressible 2-D Euler equations, Math. Res. Lett., 4 (1997), pp. 1-20.
-
(1997)
Math. Res. Lett.
, vol.4
, pp. 1-20
-
-
Levy, D.1
Tadmor, E.2
-
19
-
-
1542576022
-
Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I
-
X.-D. LIU AND S. OSHER, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I, SIAM J. Numer. Anal., 33 (1996), pp. 760-779.
-
(1996)
SIAM J. Numer. Anal.
, vol.33
, pp. 760-779
-
-
Liu, X.-D.1
Osher, S.2
-
20
-
-
0040683714
-
Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids
-
X.-D. LIU AND S. OSHER, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, J. Comput. Phys., 142 (1998), pp. 304-330.
-
(1998)
J. Comput. Phys.
, vol.142
, pp. 304-330
-
-
Liu, X.-D.1
Osher, S.2
-
21
-
-
0032336616
-
Third order nonoscillatory central scheme for hyperbolic conservation laws
-
X.-D. LIU AND E. TADMOR, Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79 (1998), pp. 397-425.
-
(1998)
Numer. Math.
, vol.79
, pp. 397-425
-
-
Liu, X.-D.1
Tadmor, E.2
-
22
-
-
28144455569
-
Non-oscillatory central differencing for hyperbolic conservation laws
-
H. NESSYAHU AND E. TADMOR, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408-463.
-
(1990)
J. Comput. Phys.
, vol.87
, pp. 408-463
-
-
Nessyahu, H.1
Tadmor, E.2
-
23
-
-
84966232121
-
On the convergence of difference approximations to scalar conservation laws
-
S. OSHER AND E. TADMOR, On the convergence of difference approximations to scalar conservation laws, Math. Comp., 50 (1988), pp. 19-51.
-
(1988)
Math. Comp.
, vol.50
, pp. 19-51
-
-
Osher, S.1
Tadmor, E.2
-
24
-
-
2942757053
-
Approximate Riemann solvers, parameter vectors, and difference schemes
-
P. L. ROE, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357-372.
-
(1981)
J. Comput. Phys.
, vol.43
, pp. 357-372
-
-
Roe, P.L.1
-
25
-
-
0001540763
-
A high resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws
-
R. SANDERS AND A. WEISER, A high resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws, J. Comput. Phys., 101 (1992), pp. 314-329.
-
(1992)
J. Comput. Phys.
, vol.101
, pp. 314-329
-
-
Sanders, R.1
Weiser, A.2
-
26
-
-
0001568854
-
Efficient implementation of essentially nonoscillatory schemes, II
-
C. W. SHU AND S. OSHER, Efficient implementation of essentially nonoscillatory schemes, II, J. Comput. Phys., 83 (1989), pp. 32-78.
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 32-78
-
-
Shu, C.W.1
Osher, S.2
-
27
-
-
2942705023
-
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
-
G. SOD, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 22 (1978), pp. 1-31.
-
(1978)
J. Comput. Phys.
, vol.22
, pp. 1-31
-
-
Sod, G.1
-
28
-
-
0021513424
-
High resolution schemes using flux limiters for hyperbolic conservation laws
-
P. K. SWEBY, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21 (1984), pp. 995-1011.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 995-1011
-
-
Sweby, P.K.1
-
29
-
-
84966249400
-
Numerical viscosity and the entropy condition for conservative difference schemes
-
E. TADMOR, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43 (1984), pp. 369-381.
-
(1984)
Math. Comp.
, vol.43
, pp. 369-381
-
-
Tadmor, E.1
-
31
-
-
48749139407
-
The numerical simulation of two-dimensional fluid flow with strong shocks
-
P. WOODWARD AND P. COLELLA, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54 (1988), pp. 115-173.
-
(1988)
J. Comput. Phys.
, vol.54
, pp. 115-173
-
-
Woodward, P.1
Colella, P.2
|