-
1
-
-
1642264109
-
-
note
-
See the preceding paper Tetrahedron Lett. 2004, 45, 3147-3151.
-
-
-
-
2
-
-
0034704642
-
-
For previous examples for catalytic enantioselective Strecker reaction of ketoimines, see:
-
For previous examples for catalytic enantioselective Strecker reaction of ketoimines, see: Vachal P., Jacobsen E.N. Org. Lett. 2:2000;867.
-
(2000)
Org. Lett.
, vol.2
, pp. 867
-
-
Vachal, P.1
Jacobsen, E.N.2
-
5
-
-
0037958740
-
-
Masumoto S., Usuda H., Suzuki M., Kanai M., Shibasaki M. J. Am. Chem. Soc. 125:2003;5634.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 5634
-
-
Masumoto, S.1
Usuda, H.2
Suzuki, M.3
Kanai, M.4
Shibasaki, M.5
-
6
-
-
0041378065
-
-
For an excellent review, see:
-
For an excellent review, see: Gröger H. Chem. Rev. 103:2003;2795.
-
(2003)
Chem. Rev.
, vol.103
, pp. 2795
-
-
Gröger, H.1
-
7
-
-
0034738068
-
-
Catalytic asymmetric alkylation is another powerful methodology for disubstituted α-amino acid synthesis. For recent examples, see:
-
Catalytic asymmetric alkylation is another powerful methodology for disubstituted α-amino acid synthesis. For recent examples, see: Ooi T., Takeuchi M., Kameda M., Maruoka K. J. Am. Chem. Soc. 122:2000;5228.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 5228
-
-
Ooi, T.1
Takeuchi, M.2
Kameda, M.3
Maruoka, K.4
-
10
-
-
0035840992
-
-
The gadolinium cyanide, not TMSCN itself, is the actual nucleophile in the catalytic cyanosilylation of ketones, confirmed by labeling studies: See also the proposed catalytic cycle in Ref. 8 (Scheme 2).
-
The gadolinium cyanide, not TMSCN itself, is the actual nucleophile in the catalytic cyanosilylation of ketones, confirmed by labeling studies: Yabu K., Masumoto S., Yamasaki S., Hamashima Y., Kanai M., Du W., Curran D.P., Shibasaki M. J. Am. Chem. Soc. 123:2001;9908. See also the proposed catalytic cycle in Ref. 8 (Scheme 2).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 9908
-
-
Yabu, K.1
Masumoto, S.2
Yamasaki, S.3
Hamashima, Y.4
Kanai, M.5
Du, W.6
Curran, D.P.7
Shibasaki, M.8
-
11
-
-
1642264109
-
-
note
-
For the reactivity and enantioselectivity differences between in the absence and presence of protic additive, see Tetrahedron Lett. 2004, 45, 3147-3151.
-
-
-
-
12
-
-
1642404545
-
-
note
-
Other factors such as the fact that the substrates are more readily soluble to the reaction media under the TMSCN (cat.)-HCN conditions than under TMSCN-DMP conditions, and/or the retardation effect of the trimethylsilylated DMP, cannot be excluded as origins of the reactivity difference.
-
-
-
-
13
-
-
1642334767
-
-
note
-
Lack of reactivity using only HCN is also important from the mechanistic point of view, that is, the pre-catalyst 6 cannot be directly converted to the active catalyst 3 (Scheme 2). Working hypothesis for the catalytic cycle is postulated in Scheme 2, based on these new experimental results and previous mechanistic studies (Ref. 5). The catalytic cycle should always proceed through the intermediary of silylated 2. Thus, TMSCN produced in the active catalyst ( 3 ) formation step functions as a catalyst re-generator (from 6 to 3 through 2 ).
-
-
-
-
14
-
-
1642323556
-
-
note
-
High purity of the substrate N-phosphinoylketoimines is very important especially when catalyst loading was reduced. Substrate purification through flash column chromatography followed by recrystallization using anhydrous solvents under argon atmosphere was effective to obtain the substrates with high purity.
-
-
-
-
15
-
-
0000629708
-
-
iPrOH (1:1) in propionitrile (1.1 M) under ice bath for 2 h
-
iPrOH (1:1) in propionitrile (1.1 M) under ice bath for 2 h.
-
(1986)
J. Org. Chem.
, vol.51
, pp. 3545
-
-
Mai, K.1
Patil, G.2
-
16
-
-
85173655988
-
-
Slatta K.H. Ber. 67:1934;1028.
-
(1934)
Ber.
, vol.67
, pp. 1028
-
-
Slatta, K.H.1
|