-
2
-
-
0000117752
-
-
An influential early work is S. Faber and J. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979). For a recent review, see Y. Sofue and V. Rubin, Annu. Rev. Astron. Astrophys. 39, 137 (2001).
-
(1979)
Annu. Rev. Astron. Astrophys.
, vol.17
, pp. 135
-
-
Faber, S.1
Gallagher, J.2
-
3
-
-
0039698154
-
-
An influential early work is S. Faber and J. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979). For a recent review, see Y. Sofue and V. Rubin, Annu. Rev. Astron. Astrophys. 39, 137 (2001).
-
(2001)
Annu. Rev. Astron. Astrophys.
, vol.39
, pp. 137
-
-
Sofue, Y.1
Rubin, V.2
-
5
-
-
85037885745
-
-
There are a large number of recent works is the same general spirit as this paper. See, for example, U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. D 63, 125016 (2001); L. Cabral-Rosetti, T. Matos, D. Nuñez, and Roberto A. Sussman, Classical Quantum Gravity 19, 3603 (2002); F. E. Schunck, astro-ph/9802258; E.W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002) ; S. Bharadwaj and S. Kar, Phys. Rev. D 68, 023516 (2003).
-
(2001)
Phys. Rev. D
, vol.63
, pp. 125016
-
-
Nucamendi, U.1
Salgado, M.2
Sudarsky, D.3
-
6
-
-
0038096176
-
-
There are a large number of recent works is the same general spirit as this paper. See, for example, U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. D 63, 125016 (2001); L. Cabral-Rosetti, T. Matos, D. Nuñez, and Roberto A. Sussman, Classical Quantum Gravity 19, 3603 (2002); F. E. Schunck, astro-ph/9802258; E.W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002) ; S. Bharadwaj and S. Kar, Phys. Rev. D 68, 023516 (2003).
-
(2002)
Classical Quantum Gravity
, vol.19
, pp. 3603
-
-
Cabral-Rosetti, L.1
Matos, T.2
Roberto, D.N.3
Sussman, A.4
-
7
-
-
85037885745
-
-
E.F. Schunck, astro-ph/9802258
-
There are a large number of recent works is the same general spirit as this paper. See, for example, U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. D 63, 125016 (2001); L. Cabral-Rosetti, T. Matos, D. Nuñez, and Roberto A. Sussman, Classical Quantum Gravity 19, 3603 (2002); F. E. Schunck, astro-ph/9802258; E.W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002) ; S. Bharadwaj and S. Kar, Phys. Rev. D 68, 023516 (2003).
-
-
-
-
8
-
-
0037101374
-
-
There are a large number of recent works is the same general spirit as this paper. See, for example, U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. D 63, 125016 (2001); L. Cabral-Rosetti, T. Matos, D. Nuñez, and Roberto A. Sussman, Classical Quantum Gravity 19, 3603 (2002); F. E. Schunck, astro-ph/9802258; E.W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002) ; S. Bharadwaj and S. Kar, Phys. Rev. D 68, 023516 (2003).
-
(2002)
Phys. Rev. D
, vol.66
, pp. 023503
-
-
Mielke, E.W.1
Schunck, F.E.2
-
9
-
-
4344686433
-
-
There are a large number of recent works is the same general spirit as this paper. See, for example, U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. D 63, 125016 (2001); L. Cabral-Rosetti, T. Matos, D. Nuñez, and Roberto A. Sussman, Classical Quantum Gravity 19, 3603 (2002); F. E. Schunck, astro-ph/9802258; E.W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002) ; S. Bharadwaj and S. Kar, Phys. Rev. D 68, 023516 (2003).
-
(2003)
Phys. Rev. D
, vol.68
, pp. 023516
-
-
Bharadwaj, S.1
Kar, S.2
-
10
-
-
85032430644
-
-
We use geometrical units throughout, a signature of +2 and the summation convention.
-
We use geometrical units throughout, a signature of +2 and the summation convention.
-
-
-
-
11
-
-
85032431176
-
-
Here an overdot (̇) signifies differentiation with respect to an affine parameter, the proper time in the timelike case.
-
Here an overdot (̇) signifies differentiation with respect to an affine parameter, the proper time in the timelike case.
-
-
-
-
12
-
-
85032425953
-
-
Henceforth we do not explicitly write out functions of r [e.g., Φ ≡ Φ(r)], and we use / Φ d/dr.
-
Henceforth we do not explicitly write out functions of r [e.g., Φ ≡ Φ(r)], and we use / Φ d/dr.
-
-
-
-
13
-
-
0004111541
-
-
Cambridge University Press, Cambridge, England
-
For a careful derivation, see E. Schrödinger, Expanding Universes (Cambridge University Press, Cambridge, England, 1956).
-
(1956)
Expanding Universes
-
-
Schrödinger, E.1
-
14
-
-
85032431126
-
-
note
-
2, where c is the constant of integration. Both (7) and (9) require c < 0, and so the required potential is of the anti-de Sitter form, though there is no suggestion that c is universal. This already makes clear that there is a fitting problem in the sense that if Φ(∞) = 0 then the fundamental character of Φ(r) changes in the intervening region.
-
-
-
-
17
-
-
0041016145
-
-
2 + β), where α and β are positive constants characteristic of a particular galaxy.
-
(1998)
ASP Conf. Series
, vol.182
, pp. 339
-
-
Bosma, A.1
-
18
-
-
85032431118
-
-
note
-
2)] and d is a constant of integration (≠ 0)
-
-
-
-
19
-
-
0034341481
-
-
2). Alternate full rotation curves, not just a "halo" component, can be considered and Φ solved in exactly the same way. In general, one would expect recourse to numerical procedures, but in all cases Φ must satisfy conditions (7), (9), and (17).
-
(2000)
Classical Quantum Gravity
, vol.17
-
-
Matos, T.1
Guzman, F.2
-
20
-
-
0141845452
-
-
2). Alternate full rotation curves, not just a "halo" component, can be considered and Φ solved in exactly the same way. In general, one would expect recourse to numerical procedures, but in all cases Φ must satisfy conditions (7), (9), and (17).
-
(2000)
Phys. Rev. D
, vol.62
, pp. 061301
-
-
Matos, T.1
Guzman, F.2
Nunez, D.3
-
21
-
-
0036390064
-
-
2). Alternate full rotation curves, not just a "halo" component, can be considered and Φ solved in exactly the same way. In general, one would expect recourse to numerical procedures, but in all cases Φ must satisfy conditions (7), (9), and (17).
-
(2002)
Classical Quantum Gravity
, vol.19
, pp. 5017
-
-
Alcubierre, M.1
Guzman, F.2
Matos, T.3
Nunez, D.4
Urena, L.5
Wiederhold, P.6
-
23
-
-
0347157058
-
-
See K. Lake, Phys. Rev. D 67, 104015 (2003) for the case H = 0. Somewhat simpler forms of the procedure described there have been given recently by D. Martin and M. Visser, gr-qc/0306109, and by Jan Gogolin (private communication). Here we continue to use Φ and Φ because of conditions (7), (9), and (17).
-
(2003)
Phys. Rev. D
, vol.67
, pp. 104015
-
-
Lake, S.K.1
-
24
-
-
33750339741
-
-
D. Martin and M. Visser, gr-qc/0306109
-
See K. Lake, Phys. Rev. D 67, 104015 (2003) for the case H = 0. Somewhat simpler forms of the procedure described there have been given recently by D. Martin and M. Visser, gr-qc/0306109, and by Jan Gogolin (private communication). Here we continue to use Φ and Φ because of conditions (7), (9), and (17).
-
-
-
-
25
-
-
33750339741
-
-
Jan Gogolin (private communication)
-
See K. Lake, Phys. Rev. D 67, 104015 (2003) for the case H = 0. Somewhat simpler forms of the procedure described there have been given recently by D. Martin and M. Visser, gr-qc/0306109, and by Jan Gogolin (private communication). Here we continue to use Φ and Φ because of conditions (7), (9), and (17).
-
-
-
-
26
-
-
85032427939
-
-
note
-
2φ ≃ 1 - 2m/r. (33) Neither of the approximations (32) nor (33) produce a workable Newtonian limit for our considerations here.
-
-
-
-
28
-
-
85032426412
-
-
This is a package which runs within MAPLE. It is entirely distinct from packages distributed with MAPLE and must be obtained independently. The GRTensorII software and documentation is distributed freely on the World Wide Web from the address http://grtensor.org
-
-
-
|