메뉴 건너뛰기




Volumn 68, Issue 10, 2003, Pages

All static spherically symmetric perfect-fluid solutions of Einstein's equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0347157058     PISSN: 05562821     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevD.68.104015     Document Type: Article
Times cited : (65)

References (26)
  • 2
    • 85062124158 scopus 로고    scopus 로고
    • note
    • The conditions used in [1] were (i) isotropy of the pressure (otherwise any metric is a "solution"), 00 regularity at the origin, (iii) positivity of the pressure and energy density at the origin, (iv) vanishing of the pressure at a finite boundary, (v) monotone decrease of the energy density to the boundary, and (vi) subluminal adiabatic sound speed. In addition to these, a monotone decrease in the subluminal adiabatic sound speed is desirable.
  • 3
    • 0000748704 scopus 로고
    • We use geometrical units throughout. The "curvature coordinates" used in Eq. (3) have the advantage that the metric functions have a clear invariant physical interpretation (but see also [14] below). The function m(r) is the effective gravitational mass. See W. C. Hernandez and C. W. Misner, Astrophys. J. 143, 452 (1965);
    • (1965) Astrophys. J. , vol.143 , pp. 452
    • Hernandez, W.C.1    Misner, C.W.2
  • 8
    • 85062139455 scopus 로고    scopus 로고
    • K. Lake, gr-qc/0209063
    • K. Lake, gr-qc/0209063.
  • 9
    • 85062133343 scopus 로고    scopus 로고
    • note
    • One can take the view that the Tolman-Oppenheimer-Volkoff equation is a consequence of the invariant statement (2).
  • 10
    • 0007203984 scopus 로고
    • 2[r-2m(r)]-r(d/drΦ(r))[d/drm(r))r+r -3m(r)]+3m(r)-(d/dr m(r)r=0.
    • (1935) Q. J. Math. , vol.6 , pp. 81
    • Walker, A.G.1
  • 11
    • 33644510603 scopus 로고
    • The problem has also been reduced to a linear equation of first order by A. S. Berger, R. Hojman, and J. Santamarina, J. Math. Phys. 28, 2949 (1987). Recently G. Fodor (gr-qc/0011040) has reduced the problem to ah algebraic one with integration required only for one metric function but not the physical variables ρ and p.
    • (1987) J. Math. Phys. , vol.28 , pp. 2949
    • Berger, A.S.1    Hojman, R.2    Santamarina, J.3
  • 13
    • 33646621709 scopus 로고
    • 3, which gives, uniquely, the Schwarzschild interior solution. See also H. A. Buchdahl, Am. J. Phys. 39, 158 (1971).
    • (1971) Am. J. Phys. , vol.39 , pp. 158
    • Buchdahl, H.A.1
  • 17
    • 0542442715 scopus 로고    scopus 로고
    • At an interior boundary surface p, but not ρ, must be continuous. Discontinuities in ρ are associated with phase transitions, which we do not consider here. For a discussion of interior phase transitions see, for example, L. Lindblom, Phys. Rev. D 58, 024008 (1998).
    • (1998) Phys. Rev. D , vol.58 , pp. 024008
    • Lindblom, L.1
  • 18
    • 85107713387 scopus 로고    scopus 로고
    • note
    • 2/3 which is usually dismissed under the erroneous assumption that C=0.
  • 19
    • 85062126393 scopus 로고    scopus 로고
    • N. Neary, J. Lattimer, and K. Lake (in preparation)
    • N. Neary, J. Lattimer, and K. Lake (in preparation).
  • 20
    • 0002192552 scopus 로고
    • 2. The form of condition (2) (given above in [6]) remains unchanged, as do the functional forms and physical meanings of Φ, m, ρ, and p.
    • (1964) Proc. R. Soc. London , vol.A281 , pp. 39
    • Bondi, H.1
  • 21
    • 85107713375 scopus 로고    scopus 로고
    • note
    • 2/2 where the prime indicates d/dr.
  • 23
    • 85107711928 scopus 로고    scopus 로고
    • note
    • 2) with β and γ positive constants immediately gives Gold III.
  • 24
    • 85062134713 scopus 로고    scopus 로고
    • note
    • It is also of interest to note that seven of the eleven previously known solutions of this type are special cases resulting from the two generating functions considered here.
  • 26
    • 85062131909 scopus 로고    scopus 로고
    • This is a package which runs within MAPLE. It is entirely distinct from packages distributed with MAPLE and must be obtained independently. The GRTENSOR II software and documentation is distributed freely on the World Wide Web from the address http://grtensor.org


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.