메뉴 건너뛰기




Volumn 3, Issue 2, 2003, Pages 159-175

Extrapolation detection and novelty-based node insertion for sequential growing multi-experts network

Author keywords

Certainty factor; Extrapolation; Novelty based insertion; On line learning

Indexed keywords

ALGORITHMS; BENCHMARKING; CONTROL NONLINEARITIES; ERROR ANALYSIS; FUNCTIONS; MATHEMATICAL MODELS; NEURAL NETWORKS; ONLINE SYSTEMS;

EID: 15944389474     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1568-4946(03)00011-5     Document Type: Article
Times cited : (11)

References (25)
  • 1
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1
  • 2
    • 0001002401 scopus 로고
    • Universal approximation using radial basis function networks
    • J. Park, I.W. Sandberg, Universal approximation using radial basis function networks, Neural Comput. 5 (2) (1991) 305-316.
    • (1991) Neural Comput. , vol.5 , Issue.2 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 7
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (2) (1995) 219-269.
    • (1995) Neural Comput. , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 8
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody, C.J. Darken, Fast learning in networks of locally tuned processing units, Neural Comput. 1 (1989) 281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 9
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • B. Fritzke, Fast learning with incremental RBF networks. Neural Process. Lett. 1 (1) (1994) 2-5.
    • (1994) Neural Process. Lett. , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 10
    • 0026254768 scopus 로고
    • A general regression neural network
    • D.E. Specht, A general regression neural network, IEEE Trans. Neural Netw. 2 (6) (1991) 568-576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.E.1
  • 11
    • 0347027758 scopus 로고    scopus 로고
    • Incremental neuro-fuzzy systems
    • SPIE International Symposium on Optical Science, Engineering and Instrumentation, San Diego, 27 July-1 August
    • B. Fritzke, Incremental neuro-fuzzy systems, in: Proceedings of Applications of Soft Computing, SPIE International Symposium on Optical Science, Engineering and Instrumentation, San Diego, 27 July-1 August 1997.
    • (1997) Proceedings of Applications of Soft Computing
    • Fritzke, B.1
  • 13
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on System, Man and Cybernetics, vol. 15 (1), 1985, pp. 116-132.
    • (1985) IEEE Transactions on System, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 14
    • 0012495406 scopus 로고
    • Local model networks and local learning
    • University of Duisburg, 7 April
    • R. Murray-Smith, Local model networks and local learning, in: Fuzzy-Duisburg'94, University of Duisburg, 7 April 1994, pp. 404-409.
    • (1994) Fuzzy-Duisburg'94 , pp. 404-409
    • Murray-Smith, R.1
  • 19
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • D.K. Wedding II, K.J. Cios, Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model, Neurocomputing 10 (1996) 149-168.
    • (1996) Neurocomputing , vol.10 , pp. 149-168
    • Wedding II, D.K.1    Cios, K.J.2
  • 20
    • 0028204732 scopus 로고
    • Topology representing networks
    • T.M. Martinetz, Topology representing networks, Neural Netw. 7 (3) (1994) 507-522.
    • (1994) Neural Netw. , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.M.1
  • 23
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function network, IEEE Trans. Neural Netw. 2 (1991) 302-309.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 24
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K.B. Cho, B.H. Wang, Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction, Fuzzy Sets Syst. 83 (1996) 325-339.
    • (1996) Fuzzy Sets Syst. , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 25
    • 0031139313 scopus 로고    scopus 로고
    • Nonlinear control structure based on embedded neural system models
    • G. Lightbody, G.W. Irwin, Nonlinear control structure based on embedded neural system models, IEEE Trans. Neural Netw. 8 (1997) 553-567.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 553-567
    • Lightbody, G.1    Irwin, G.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.