메뉴 건너뛰기




Volumn 9, Issue 2, 2005, Pages 153-154

Artificial neural networks as prediction tools in the critically ill

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CRITICAL ILLNESS; EMERGENCY WARD; HUMAN; INTERMETHOD COMPARISON; LOGISTIC REGRESSION ANALYSIS; MORTALITY; MULTIPLE REGRESSION; OUTCOMES RESEARCH; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; RELIABILITY; SEPSIS; SURVIVAL RATE; VALIDATION PROCESS;

EID: 15844376479     PISSN: 13648535     EISSN: None     Source Type: Journal    
DOI: 10.1186/cc3507     Document Type: Article
Times cited : (7)

References (15)
  • 1
    • 15844411613 scopus 로고    scopus 로고
    • Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room
    • Jaimes F, Farbiarz J, Alvarez D, Martinez C: Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Crit Care 2005, 9:R150-R156.
    • (2005) Crit. Care , vol.9
    • Jaimes, F.1    Farbiarz, J.2    Alvarez, D.3    Martinez, C.4
  • 2
    • 0029154890 scopus 로고
    • Outcome prediction for individual intensive care patients: Useful, misused, or abused?
    • Lemeshow S, Klar J, Teres D: Outcome prediction for individual intensive care patients: useful, misused, or abused? Intensive Care Med 1995, 21:770-776.
    • (1995) Intensive Care Med. , vol.21 , pp. 770-776
    • Lemeshow, S.1    Klar, J.2    Teres, D.3
  • 3
    • 0032061995 scopus 로고    scopus 로고
    • Severity scoring systems in the modern intensive care unit
    • Clermont G, Angus DC: Severity scoring systems in the modern intensive care unit. Ann Acad Med Singapore 1998, 27: 97-403.
    • (1998) Ann. Acad. Med. Singapore , vol.27 , pp. 397-403
    • Clermont, G.1    Angus, D.C.2
  • 5
    • 0026715586 scopus 로고
    • Predicting outcome after ICU admission. The art and science of assessing risk
    • Schuster DP: Predicting outcome after ICU admission. The art and science of assessing risk. Chest 1992, 102: 861-1870.
    • (1992) Chest , vol.102 , pp. 1861-1870
    • Schuster, D.P.1
  • 6
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S, Hosmer DW Jr: A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982, 115:92-106.
    • (1982) Am. J. Epidemiol. , vol.115 , pp. 92-106
    • Lemeshow, S.1    Hosmer Jr., D.W.2
  • 7
    • 0028285351 scopus 로고
    • A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit
    • Buchman TG, Kubos KL, Seidler AJ, Siegforth MJ: A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit. Crit Care Med 1994, 22:750-762.
    • (1994) Crit. Care Med. , vol.22 , pp. 750-762
    • Buchman, T.G.1    Kubos, K.L.2    Seidler, A.J.3    Siegforth, M.J.4
  • 9
    • 0027733424 scopus 로고
    • Modeling mortality in the intensive care unit: Comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression
    • Doig GS, Inman KJ, Sibbald WJ, Martin CM, Robertson JM: Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression. Proc Annu Symp Comput Appl Med Care 1993, 361-365.
    • (1993) Proc. Annu. Symp. Comput. Appl. Med. Care , pp. 361-365
    • Doig, G.S.1    Inman, K.J.2    Sibbald, W.J.3    Martin, C.M.4    Robertson, J.M.5
  • 10
    • 0041942665 scopus 로고    scopus 로고
    • Artificial neural network prediction of ventilator-induced lung edema formation
    • Hotchkiss JR, Broccard AF, Crooke PS: Artificial neural network prediction of ventilator-induced lung edema formation. Crit Care Med 2003, 31:2250.
    • (2003) Crit. Care Med. , vol.31 , pp. 2250
    • Hotchkiss, J.R.1    Broccard, A.F.2    Crooke, P.S.3
  • 11
    • 0035116142 scopus 로고    scopus 로고
    • Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models
    • Clermont G, Angus D, DiRusso S, Griffin M, Linde-Zwirble W: Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Crit Care Med 2001, 29:291-296.
    • (2001) Crit. Care Med. , vol.29 , pp. 291-296
    • Clermont, G.1    Angus, D.2    DiRusso, S.3    Griffin, M.4    Linde-Zwirble, W.5
  • 13
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • de Laurentiis M, Ravdin PM: A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett 1994, 77:127-138.
    • (1994) Cancer Lett. , vol.77 , pp. 127-138
    • de Laurentiis, M.1    Ravdin, P.M.2
  • 14
    • 0029635662 scopus 로고
    • Nervous about artificial neural networks?
    • Wyatt J: Nervous about artificial neural networks? Lancet 1995, 346:1175-1177.
    • (1995) Lancet , vol.346 , pp. 1175-1177
    • Wyatt, J.1
  • 15
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000, 19:541-561.
    • (2000) Stat. Med. , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.