-
2
-
-
3242784765
-
Fast K-means clustering algorithms
-
Report 95.18, School of Computer Studies, University of Leeds, June
-
Al-Daoud, M. B., Venkateswarlu, N. B., and Roberts, S. A. Fast K-means clustering algorithms. Report 95.18, School of Computer Studies, University of Leeds, June 1995.
-
(1995)
-
-
Al-Daoud, M.B.1
Venkateswarlu, N.B.2
Roberts, S.A.3
-
3
-
-
0030303747
-
New methods for the initialisation of clusters
-
Al-Daoud, M. B., Venkateswarlu, N. B., and Roberts, S. A. New methods for the initialisation of clusters. Pattern Recognition Lett., 1996, 17, 451-455.
-
(1996)
Pattern Recognition Lett.
, vol.17
, pp. 451-455
-
-
Al-Daoud, M.B.1
Venkateswarlu, N.B.2
Roberts, S.A.3
-
4
-
-
0010223634
-
An efficient K-means clustering algorithm
-
Orlando, Florida ftp://ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings
-
Alsabti, K., Ranka, S., and Singh, V. An efficient K means clustering algorithm. In Proceedings of the First Workshop on High-Performance Data Mining, Orlando, Florida, 1998; ftp:// ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings.
-
(1998)
Proceedings of the First Workshop on High-Performance Data Mining
-
-
Alsabti, K.1
Ranka, S.2
Singh, V.3
-
5
-
-
3242787931
-
Empirical observations of probabilistic heuristics for the clustering problem
-
Technical Report TR-97-018, International Computer Science Institute, Berkeley, California
-
Bilmes, J., Vahdat, A., Hsu, W., and Im, E. J. Empirical observations of probabilistic heuristics for the clustering problem. Technical Report TR-97-018, International Computer Science Institute, Berkeley, California.
-
-
-
Bilmes, J.1
Vahdat, A.2
Hsu, W.3
Im, E.J.4
-
7
-
-
0002550769
-
Refining initial points for K-means clustering
-
(Ed. J. Shavlik), Madison, Wisconsin, (Morgan Kaufmann, San Francisco, California)
-
Bradley, S. and Fayyad, U. M. Refining initial points for K-means clustering. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98) (Ed. J. Shavlik), Madison, Wisconsin, 1998, pp. 91-99 (Morgan Kaufmann, San Francisco, California).
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98)
, pp. 91-99
-
-
Bradley, S.1
Fayyad, U.M.2
-
8
-
-
0036681212
-
Numerical studies of MacQueen's K-means algorithm for computing the centroidal Voronoi tessellations
-
Du, Q. and Wong, T-W. Numerical studies of MacQueen's K means algorithm for computing the centroidal Voronoi tessellations. Int. J. Computers Math. Applics, 2002, 44, 511-523.
-
(2002)
Int. J. Computers Math. Applics.
, vol.44
, pp. 511-523
-
-
Du, Q.1
Wong, T.-W.2
-
9
-
-
84867815153
-
A fast and robust general purpose clustering algorithm
-
Lyon, France
-
Castro, V. E. and Yang, J. A fast and robust general purpose clustering algorithm. In Proceedings of the Fourth European Workshop on Principles of Knowledge Discovery in Databases and Data Mining (PKDD 00), Lyon, France, 2000, pp. 208-218.
-
(2000)
Proceedings of the Fourth European Workshop on Principles of Knowledge Discovery in Databases and Data Mining (PKDD 00)
, pp. 208-218
-
-
Castro, V.E.1
Yang, J.2
-
10
-
-
0012834533
-
Why so many clustering algorithms?
-
Castro, V. E. Why so many clustering algorithms? SIGKDD Explorations, Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2002, 4(1), 65-75.
-
(2002)
SIGKDD Explorations, Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining
, vol.4
, Issue.1
, pp. 65-75
-
-
Castro, V.E.1
-
11
-
-
0031069945
-
The LBG-U method for vector quantization - An improvement over LBG inspired from neural networks
-
Fritzke, B. The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks. Neural Processing Lett., 1997, 5(1), 35-45.
-
(1997)
Neural Processing Lett.
, vol.5
, Issue.1
, pp. 35-45
-
-
Fritzke, B.1
-
12
-
-
0038156173
-
Alternatives to the K-means algorithm that find better clusterings
-
McLean, Virginia
-
Hamerly, G. and Elkan, C. Alternatives to the K-means algorithm that find better clusterings. In Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM 02), McLean, Virginia, 2002, pp. 600-607.
-
(2002)
Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM 02)
, pp. 600-607
-
-
Hamerly, G.1
Elkan, C.2
-
13
-
-
0029749336
-
Unsupervised learning and generalisation
-
Washington, DC, June (IEEE, New York)
-
Hansen, L. K. and Larsen, J. Unsupervised learning and generalisation. In Proceedings of the IEEE International Conference on Neural Networks, Washington, DC, June 1996, pp. 25-30 (IEEE, New York).
-
(1996)
Proceedings of the IEEE International Conference on Neural Networks
, pp. 25-30
-
-
Hansen, L.K.1
Larsen, J.2
-
15
-
-
0036647190
-
The efficient K-means clustering algorithm: Analysis and implementation
-
Kanungo, T., Mount, D. M., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A. The efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Analysis Mach. Intell. 2002, 24(7), 881-892.
-
(2002)
IEEE Trans. Pattern Analysis Mach. Intell.
, vol.24
, Issue.7
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.3
Piatko, C.4
Silverman, R.5
Wu, A.6
-
16
-
-
0002738562
-
Accelerating exact K-means algorithms with geometric reasoning
-
San Diego, California
-
Pelleg, D. and Moore, A. Accelerating exact K-means algorithms with geometric reasoning. In Proceedings of the Conference on Knowledge Discovery in Databases (KDD 99), San Diego, California, 1999, pp. 277-281.
-
(1999)
Proceedings of the Conference on Knowledge Discovery in Databases (KDD 99)
, pp. 277-281
-
-
Pelleg, D.1
Moore, A.2
-
17
-
-
0001820920
-
X-means: Extending K-means with efficient estimation of the number of clusters
-
Stanford, California
-
Pelleg, D. and Moore, A. X-means: extending K means with efficient estimation of the number of clusters. In Proceedings of the 17th International Conference on Machine Learning (ICML2000), Stanford, California, 2000, 727-734.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning (ICML2000)
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
18
-
-
0033204902
-
An empirical comparison of four initialisation methods for the K-means algorithm
-
Pena, J. M., Lazano, J. A., and Larranaga, P. An empirical comparison of four initialisation methods for the K-means algorithm. Pattern Recognition Lett., 1999, 20, 1027-1040.
-
(1999)
Pattern Recognition Lett.
, vol.20
, pp. 1027-1040
-
-
Pena, J.M.1
Lazano, J.A.2
Larranaga, P.3
-
21
-
-
15544373889
-
-
(Sage, London)
-
Kerr, A., Hall, H. K., and Kozub, S. Doing Statistics with SPSS, 2002 (Sage, London).
-
(2002)
Doing Statistics With SPSS
-
-
Kerr, A.1
Hall, H.K.2
Kozub, S.3
-
22
-
-
15544371449
-
-
Insightful Corporation, Seattle, Washington
-
S-PLUS 6 for Windows Guide to Statistics, Vol. 2, Insightful Corporation, Seattle, Washington, 2001; http://www.insightful.com/ DocumentsLive/23/44/statman2.pdf.
-
(2001)
S-PLUS 6 for Windows Guide to Statistics
, vol.2
-
-
-
25
-
-
0141860731
-
Cluster validity methods. Part I
-
available online
-
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. Cluster validity methods. Part I. SIGMOD Record, 2002, 31(2); available online http://www.acm.org/sigmod/record/.
-
(2002)
SIGMOD Record
, vol.31
, Issue.2
-
-
Halkidi, M.1
Batistakis, Y.2
Vazirgiannis, M.3
-
27
-
-
15544389033
-
Technical aspects of data mining
-
PhD thesis, Cardiff University, Cardiff
-
Cai, Z. Technical aspects of data mining. PhD thesis, Cardiff University, Cardiff, 2001.
-
(2001)
-
-
Cai, Z.1
-
29
-
-
3242768576
-
Incremental K-means algorithm
-
Pham, D. T., Dimov, S. S., and Nguyen, C. D. Incremental K-means algorithm. Proc. Instn Mech. Engrs, Part C: J. Mechanical Engineering Science, 2003, 218, 783-795.
-
(2003)
Proc. Instn. Mech. Engrs., Part C: J. Mechanical Engineering Science
, vol.218
, pp. 783-795
-
-
Pham, D.T.1
Dimov, S.S.2
Nguyen, C.D.3
-
30
-
-
0003414440
-
Estimating the number of clusters in a dataset via the gap statistic
-
Technical Report 208, Department of Statistics, Stanford University, California
-
Tibshirani, R., Walther, G., and Hastie, T. Estimating the number of clusters in a dataset via the gap statistic. Technical Report 208, Department of Statistics, Stanford University, California, 2000.
-
(2000)
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
31
-
-
0003408496
-
-
Department of Information and Computer Science, University of California, Irvine, California
-
Blake, C., Keogh, E., and Merz, C. J. UCI Repository of Machine Learning Databases, Irvine, California. Department of Information and Computer Science, University of California, Irvine, California, 1998.
-
(1998)
UCI Repository of Machine Learning Databases, Irvine, California
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
|