메뉴 건너뛰기




Volumn 219, Issue 1, 2005, Pages 103-119

Selection of K in K-means clustering

Author keywords

Cluster number selection; Clustering; K means algorithm

Indexed keywords

DATA REDUCTION;

EID: 15544377114     PISSN: 09544062     EISSN: None     Source Type: Journal    
DOI: 10.1243/095440605X8298     Document Type: Article
Times cited : (505)

References (31)
  • 2
    • 3242784765 scopus 로고
    • Fast K-means clustering algorithms
    • Report 95.18, School of Computer Studies, University of Leeds, June
    • Al-Daoud, M. B., Venkateswarlu, N. B., and Roberts, S. A. Fast K-means clustering algorithms. Report 95.18, School of Computer Studies, University of Leeds, June 1995.
    • (1995)
    • Al-Daoud, M.B.1    Venkateswarlu, N.B.2    Roberts, S.A.3
  • 5
    • 3242787931 scopus 로고    scopus 로고
    • Empirical observations of probabilistic heuristics for the clustering problem
    • Technical Report TR-97-018, International Computer Science Institute, Berkeley, California
    • Bilmes, J., Vahdat, A., Hsu, W., and Im, E. J. Empirical observations of probabilistic heuristics for the clustering problem. Technical Report TR-97-018, International Computer Science Institute, Berkeley, California.
    • Bilmes, J.1    Vahdat, A.2    Hsu, W.3    Im, E.J.4
  • 8
    • 0036681212 scopus 로고    scopus 로고
    • Numerical studies of MacQueen's K-means algorithm for computing the centroidal Voronoi tessellations
    • Du, Q. and Wong, T-W. Numerical studies of MacQueen's K means algorithm for computing the centroidal Voronoi tessellations. Int. J. Computers Math. Applics, 2002, 44, 511-523.
    • (2002) Int. J. Computers Math. Applics. , vol.44 , pp. 511-523
    • Du, Q.1    Wong, T.-W.2
  • 11
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for vector quantization - An improvement over LBG inspired from neural networks
    • Fritzke, B. The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks. Neural Processing Lett., 1997, 5(1), 35-45.
    • (1997) Neural Processing Lett. , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 18
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialisation methods for the K-means algorithm
    • Pena, J. M., Lazano, J. A., and Larranaga, P. An empirical comparison of four initialisation methods for the K-means algorithm. Pattern Recognition Lett., 1999, 20, 1027-1040.
    • (1999) Pattern Recognition Lett. , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lazano, J.A.2    Larranaga, P.3
  • 22
    • 15544371449 scopus 로고    scopus 로고
    • Insightful Corporation, Seattle, Washington
    • S-PLUS 6 for Windows Guide to Statistics, Vol. 2, Insightful Corporation, Seattle, Washington, 2001; http://www.insightful.com/ DocumentsLive/23/44/statman2.pdf.
    • (2001) S-PLUS 6 for Windows Guide to Statistics , vol.2
  • 25
    • 0141860731 scopus 로고    scopus 로고
    • Cluster validity methods. Part I
    • available online
    • Halkidi, M., Batistakis, Y., and Vazirgiannis, M. Cluster validity methods. Part I. SIGMOD Record, 2002, 31(2); available online http://www.acm.org/sigmod/record/.
    • (2002) SIGMOD Record , vol.31 , Issue.2
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 26
  • 27
    • 15544389033 scopus 로고    scopus 로고
    • Technical aspects of data mining
    • PhD thesis, Cardiff University, Cardiff
    • Cai, Z. Technical aspects of data mining. PhD thesis, Cardiff University, Cardiff, 2001.
    • (2001)
    • Cai, Z.1
  • 30
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • Technical Report 208, Department of Statistics, Stanford University, California
    • Tibshirani, R., Walther, G., and Hastie, T. Estimating the number of clusters in a dataset via the gap statistic. Technical Report 208, Department of Statistics, Stanford University, California, 2000.
    • (2000)
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.