-
3
-
-
0042568531
-
-
C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, J. Appl. Phys. 88, 3113 (2000).
-
(2000)
J. Appl. Phys.
, vol.88
, pp. 3113
-
-
Angell, C.A.1
Ngai, K.L.2
McKenna, G.B.3
McMillan, P.F.4
Martin, S.W.5
-
5
-
-
33645082289
-
-
note
-
This feature is common to most of glass formers, except for atactic polymers that hardly crystallize due to quenched structural disorder (stereoirregularity).
-
-
-
-
6
-
-
0034624695
-
-
Here we consider usual glass formers that have higher entropy than the corresponding crystal and do not consider exceptional cases that exhibit "inverse melting phenomenon" [9]. The famous examples are those in helium isotopes and a polymeric substance [A.L. Greer, Nature (London) 404, 134 (2000)]. In these exceptional cases, the crystals having inverse melting behavior is not stable upon cooling. Thus, such crystals do not exist at T=0. This means that these examples are out of the scope of the Kauzmann paradox that assumes the very existence of the crystal at T=0.
-
(2000)
Nature (London)
, vol.404
, pp. 134
-
-
Greer, A.L.1
-
7
-
-
33947442893
-
-
Washington, D.C.
-
W. Kauzmann, Chem. Rev. (Washington, D.C.) 43, 219 (1948).
-
(1948)
Chem. Rev.
, vol.43
, pp. 219
-
-
Kauzmann, W.1
-
11
-
-
33645082035
-
-
On the history of various ideas resolving the Kauzmann paradox, see Sec. 4.3.1 of Ref. [1] and also Refs. [9] and [10]
-
On the history of various ideas resolving the Kauzmann paradox, see Sec. 4.3.1 of Ref. [1] and also Refs. [9] and [10].
-
-
-
-
12
-
-
33645071394
-
-
note
-
α after a temperature change.
-
-
-
-
17
-
-
0003975020
-
Directions in Condensed Matter Physics
-
edited by A.P. Young, World Scientific, London
-
J.-P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and M. Mezard, in Spin Glasses and Random Fields, edited by A.P. Young, Directions in Condensed Matter Physics, Vol. 12 (World Scientific, London, 1998).
-
(1998)
Spin Glasses and Random Fields
, vol.12
-
-
Bouchaud, J.-P.1
Cugliandolo, L.F.2
Kurchan, J.3
Mezard, M.4
-
20
-
-
0001184244
-
-
A. Masuhr, T.A. Waniuk, R. Busch, and W.L. Johnson, Phys. Rev. Lett. 82, 2290 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2290
-
-
Masuhr, A.1
Waniuk, T.A.2
Busch, R.3
Johnson, W.L.4
-
22
-
-
0037428571
-
-
S.F. Swallen, P.A. Bonvallet, R.J. McMahon, and M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 015901
-
-
Swallen, S.F.1
Bonvallet, P.A.2
McMahon, R.J.3
Ediger, M.D.4
-
24
-
-
33645054886
-
-
note
-
0 [23].
-
-
-
-
27
-
-
33645047230
-
-
Our physical picture on this issue is discussed in Ref. [28]
-
Our physical picture on this issue is discussed in Ref. [28].
-
-
-
-
29
-
-
0142072152
-
-
H. Tanaka, J. Phys.: Condens. Matter 10, L207 (1998); J. Chem. Phys. 111, 3163 (1999); 111, 3175 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 3163
-
-
-
30
-
-
19044373601
-
-
H. Tanaka, J. Phys.: Condens. Matter 10, L207 (1998); J. Chem. Phys. 111, 3163 (1999); 111, 3175 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 3175
-
-
-
35
-
-
0001255432
-
-
J.H. Magill and D.J. Plazek, Nature (London) 207, 70 (1966); J. Chem. Phys. 46, 3757 (1967).
-
(1967)
J. Chem. Phys.
, vol.46
, pp. 3757
-
-
-
36
-
-
33645077140
-
-
note
-
B.
-
-
-
-
39
-
-
0038664393
-
-
F. Faupel, W. Frank, M-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, and H. Teichler, Rev. Mod. Phys. 75, 237 (2003).
-
(2003)
Rev. Mod. Phys.
, vol.75
, pp. 237
-
-
Faupel, F.1
Frank, W.2
Macht, M.-P.3
Mehrer, H.4
Naundorf, V.5
Rätzke, K.6
Schober, H.R.7
Sharma, S.K.8
Teichler, H.9
-
41
-
-
33645089497
-
-
note
-
B, which is strongly supported by the experimental studies on molecular [21,22] and metallic [20] glass formers.
-
-
-
-
43
-
-
0033608977
-
-
and references therein
-
T. Hikima, M. Hanaya, and M. Oguni, J. Mol. Struct. 479, 245 (1999), and references therein.
-
(1999)
J. Mol. Struct.
, vol.479
, pp. 245
-
-
Hikima, T.1
Hanaya, M.2
Oguni, M.3
-
44
-
-
33645093000
-
-
note
-
This problem is intrinsically important in uncrystallizable liquids such as atactic polymers, which is out of scope of our scenario. However, the absence of crystal means that there is no Kauzmann paradox in the strict sense. Nevertheless, it is fundamentally important to consider how the configurational entropy goes to zero for these systems.
-
-
-
|