메뉴 건너뛰기




Volumn 22, Issue 2, 2005, Pages 101-125

Relating the almost-sure lyapunov exponent of a parabolic SPDE and its coefficients' spatial regularity

Author keywords

Feynman Kac formula; Gaussian regularity; Lyapunov exponent; Parabolic stochastic partial differential equations

Indexed keywords


EID: 15444361840     PISSN: 09262601     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11118-004-0576-8     Document Type: Article
Times cited : (5)

References (14)
  • 2
    • 0033177553 scopus 로고    scopus 로고
    • Lyapunov exponents and stability for nonlinear SPDE's driven by finite-dimensional Wiener processes
    • Berge, B., Chueshov, I.D. and Vuillermot, P.-A.: 'Lyapunov exponents and stability for nonlinear SPDE's driven by finite-dimensional Wiener processes', C.R. Acad. Sci. Paris Sér. I Math. 329(3) (1999), 215-220.
    • (1999) C.R. Acad. Sci. Paris Sér. I Math. , vol.329 , Issue.3 , pp. 215-220
    • Berge, B.1    Chueshov, I.D.2    Vuillermot, P.-A.3
  • 3
    • 0039572010 scopus 로고    scopus 로고
    • On the long-time behavior of the stochastic heat equation
    • Bertini, L. and Giacomin, G.: 'On the long-time behavior of the stochastic heat equation', Probab. Theory Related Fields 114(3) (1999), 279-289.
    • (1999) Probab. Theory Related Fields , vol.114 , Issue.3 , pp. 279-289
    • Bertini, L.1    Giacomin, G.2
  • 5
    • 0002571941 scopus 로고    scopus 로고
    • Sharp upper bound on exponential behavior of a stochastic partial differential equation
    • Carmona, R.A., Molchanov, S.A. and Viens, F.G.: 'Sharp upper bound on exponential behavior of a stochastic partial differential equation', Random Operators and Stochastic Equations 4(1) (1996), 43-49.
    • (1996) Random Operators and Stochastic Equations , vol.4 , Issue.1 , pp. 43-49
    • Carmona, R.A.1    Molchanov, S.A.2    Viens, F.G.3
  • 6
    • 0000454796 scopus 로고    scopus 로고
    • Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter
    • Carmona, R. and Viens, F.: 'Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter', Stochastics Stochastics Rep. 62(3-4) (1998), 251-273.
    • (1998) Stochastics Stochastics Rep. , vol.62 , Issue.3-4 , pp. 251-273
    • Carmona, R.1    Viens, F.2
  • 9
    • 0032355056 scopus 로고    scopus 로고
    • The stochastic wave equation in two spatial dimensions
    • Dalang, R. and Frangos, N.: 'The stochastic wave equation in two spatial dimensions', Ann. Probab. 26 (1998), 187-212.
    • (1998) Ann. Probab. , vol.26 , pp. 187-212
    • Dalang, R.1    Frangos, N.2
  • 10
    • 0034552460 scopus 로고    scopus 로고
    • Almost sure asymptotics for the continuous parabolic Anderson model
    • Gartner, J., Konig, W. and Molchanov, S.A.: 'Almost sure asymptotics for the continuous parabolic Anderson model', Probab. Theory Related Fields 118(4) (2000), 547-573.
    • (2000) Probab. Theory Related Fields , vol.118 , Issue.4 , pp. 547-573
    • Gartner, J.1    Konig, W.2    Molchanov, S.A.3
  • 12
    • 0033415166 scopus 로고    scopus 로고
    • A stochastic wave equation in two spatial dimensions: Smoothness of the law
    • Millet, A. and Sanz-Sole, M.: 'A stochastic wave equation in two spatial dimensions: Smoothness of the law', Ann. Probab. 27(2) (1999), 803-844.
    • (1999) Ann. Probab. , vol.27 , Issue.2 , pp. 803-844
    • Millet, A.1    Sanz-Sole, M.2
  • 13
    • 0034389942 scopus 로고    scopus 로고
    • Nonlinear stochastic wave and heat equations
    • Peszat, S. and Zabczyk, J.: 'Nonlinear stochastic wave and heat equations', Probab. Theory Related Fields 116(3) (2000), 421-443.
    • (2000) Probab. Theory Related Fields , vol.116 , Issue.3 , pp. 421-443
    • Peszat, S.1    Zabczyk, J.2
  • 14
    • 0036335026 scopus 로고    scopus 로고
    • Almost sure exponential behaviour for a parabolic SPDE on a manifold
    • Tindel, S. and Viens, F.: 'Almost sure exponential behaviour for a parabolic SPDE on a manifold', Stochastic Process. Appl. 100 (2002), 53-74.
    • (2002) Stochastic Process. Appl. , vol.100 , pp. 53-74
    • Tindel, S.1    Viens, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.