-
9
-
-
0004291858
-
-
L. J. Berliner, S. S. Eaton and G. R. Eaton, Kluwer Academic/Plenum Publishers
-
Distance Measurements in Biological Systems by EPR, eds. L. J. Berliner, S. S. Eaton and G. R. Eaton, Kluwer Academic/Plenum Publishers, 2001.
-
(2001)
Distance Measurements in Biological Systems by EPR
-
-
-
10
-
-
0032550651
-
-
A. C. Templeton M. J. Hostetler E. K. Warmoth S. Chen C. M. Hartshorn V. M. Krishnamurthy M. D. E. Forbes R. W. Murray J. Am. Chem. Soc. 1998 120 4845.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 4845
-
-
Templeton, A.C.1
Hostetler, M.J.2
Warmoth, E.K.3
Chen, S.4
Hartshorn, C.M.5
Krishnamurthy, V.M.6
Forbes, M.D.E.7
Murray, R.W.8
-
17
-
-
85034319482
-
-
c values calculated by eqn. (1) are still a good approximation of the geometrical average (Equation presented), especially for the radicals which have the long axis along the N–O bond. It is not possible to obtain more accurate estimate of the rotational correlation times in the absence of the precise values of the A and g tensor components
-
c values calculated by eqn. (1) are still a good approximation of the geometrical average (Equation presented), especially for the radicals which have the long axis along the N–O bond. It is not possible to obtain more accurate estimate of the rotational correlation times in the absence of the precise values of the A and g tensor components.
-
-
-
-
18
-
-
0344210078
-
-
Nauka, Moscow, (in Russian)
-
A. N. Kuznetsov, Spin Probe Technique, Nauka, Moscow, 1976, p. 53, (in Russian).
-
(1976)
Spin Probe Technique
, pp. 53
-
-
Kuznetsov, A.N.1
-
22
-
-
85034343915
-
-
This is only true for i ≪ number of binding sites on an Au particles
-
This is only true for i ≪ number of binding sites on an Au particles.
-
-
-
-
23
-
-
85034335190
-
-
If we consider a spin label attached to a nanoparticle, the probability of finding a non-radical ligand at a neighbouring site is (n − i)/(n − 1), as there are (n − i) non-radical ligands distributed randomly between (n − 1) sites [there are n binding sites altogether, but one site (the one we are considering) is already occupied by a spin label]. Similarly, the probability of finding a non-radical ligand at a second neighbouring site is (n − i − 1)/(n − 2), etc. Multiplying these probabilities, we obtained the formula shown in the text
-
If we consider a spin label attached to a nanoparticle, the probability of finding a non-radical ligand at a neighbouring site is (n − i)/(n − 1), as there are (n − i) non-radical ligands distributed randomly between (n − 1) sites [there are n binding sites altogether, but one site (the one we are considering) is already occupied by a spin label]. Similarly, the probability of finding a non-radical ligand at a second neighbouring site is (n − i − 1)/(n − 2), etc. Multiplying these probabilities, we obtained the formula shown in the text.
-
-
-
-
30
-
-
0032488526
-
-
M. J. Hostetler J. E. Wingate C.-J. Zhong J. E. Harris R. W. Vachet M. R. Clark J. D. Londono S. J. Green J. J. Stokes G. D. Wignall G. L. Glish M. D. Porter N. D. Evans R. W. Murray Langmuir 1998 14 17.
-
(1998)
Langmuir
, vol.14
, pp. 17
-
-
Hostetler, M.J.1
Wingate, J.E.2
Zhong, C.-J.3
Harris, J.E.4
Vachet, R.W.5
Clark, M.R.6
Londono, J.D.7
Green, S.J.8
Stokes, J.J.9
Wignall, G.D.10
Glish, G.L.11
Porter, M.D.12
Evans, N.D.13
Murray, R.W.14
-
32
-
-
15844386157
-
-
R. H. Terrill T. A. Postlethwaite C.-H. Chen C.-D. Poon A. Terzis A. Chen J. E. Hutchison M. R. Clark G. Wignall J. D. Londono R. Superfine M. Falvo C. S. Johnson E. T. Samulski R. W. Murray J. Am. Chem. Soc. 1995 117 12 537.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12537
-
-
Terrill, R.H.1
Postlethwaite, T.A.2
Chen, C.-H.3
Poon, C.-D.4
Terzis, A.5
Chen, A.6
Hutchison, J.E.7
Clark, M.R.8
Wignall, G.9
Londono, J.D.10
Superfine, R.11
Falvo, M.12
Johnson, C.S.13
Samulski, E.T.14
Murray, R.W.15
|