메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 1956-1961

Nonlinear PCA Combining Principal Curves and RBF-Networks for Process Monitoring

Author keywords

Fault detection; Nonlinear PCA; Principal curves; Radial basis functions

Indexed keywords

ALGORITHMS; MATHEMATICAL TRANSFORMATIONS; NONLINEAR CONTROL SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; SENSOR DATA FUSION; STATISTICAL METHODS;

EID: 1542290136     PISSN: 07431546     EISSN: 25762370     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (16)
  • 1
    • 0028555207 scopus 로고
    • Nonlinear principal component analysis - Based on principal curves and neural networks
    • Baltimore, Maryland, June
    • Dong D. and McAvoy T. J., Nonlinear principal component analysis - based on principal curves and neural networks. Proceedings of the American Control Conference, Baltimore, Maryland, pp. 1284-1288, June 1994.
    • (1994) Proceedings of the American Control Conference , pp. 1284-1288
    • Dong, D.1    McAvoy, T.J.2
  • 2
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • October
    • Dunia R., Qin S. J. and Edgar T. F., Identification of faulty sensors using principal component analysis. AIChE Journal, vol. 42, N. 10, pp. 2797-2812, October 1996.
    • (1996) AIChE Journal , vol.42 , Issue.10 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3
  • 3
    • 0345929238 scopus 로고    scopus 로고
    • Analytical and qualitative model-based fault diagnosis: A survey and some new results
    • Frank, P.M., Analytical and qualitative model-based fault diagnosis: a survey and some new results. Eur. J. Cont., vol. 2, pp. 6-28, 1996.
    • (1996) Eur. J. Cont. , vol.2 , pp. 6-28
    • Frank, P.M.1
  • 4
    • 0000333541 scopus 로고    scopus 로고
    • Principal component analysis and parity relations - A strong duality
    • Hull, UK
    • Gertler J. and McAvoy T., Principal component analysis and parity relations - A strong duality. IFAC Conference SAFEPROCESS, Hull, UK, pp. 837-842, 1997.
    • (1997) IFAC Conference SAFEPROCESS , pp. 837-842
    • Gertler, J.1    McAvoy, T.2
  • 8
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using auto-associative neural networks
    • February
    • Kramer M. A., Nonlinear principal component analysis using auto-associative neural networks. AIChE Journal, vol. 37, N. 2, pp. 233-243, February 1991.
    • (1991) AIChE Journal , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 9
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta J. V., MacGregor J. F. and Marlin T. E., Multivariate statistical monitoring of process operating performance. Canadian J. Chem. Eng., vol. 69, N. 1, pp. 35-47, 1991.
    • (1991) Canadian J. Chem. Eng. , vol.69 , Issue.1 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 11
    • 0001667327 scopus 로고    scopus 로고
    • Anlysis, monitoring and fault diagnosis of industrial processes using multivariate statistical projection methods
    • San Francisco, USA
    • MacGregor J. F., Kourti T. and Nomikos P., Anlysis, monitoring and fault diagnosis of industrial processes using multivariate statistical projection methods. IFAC, 13th Triennial Word Congress, San Francisco, USA, pp. 145-150, 1996.
    • (1996) IFAC, 13th Triennial Word Congress , pp. 145-150
    • MacGregor, J.F.1    Kourti, T.2    Nomikos, P.3
  • 12
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: A missing link in multivariate quality control
    • Miller P., Swanson R. E., and Heckler C. E., Contribution plots: A missing link in multivariate quality control. Applied Mathematics and Computer Science, vol. 8, N. 4, pp. 775-792, 1998.
    • (1998) Applied Mathematics and Computer Science , vol.8 , Issue.4 , pp. 775-792
    • Miller, P.1    Swanson, R.E.2    Heckler, C.E.3
  • 13
    • 0029322882 scopus 로고
    • Reduction data dimensionality through optimizing neural network inputs
    • June
    • Tan S. and Mavrovouniotis M. L., Reduction data dimensionality through optimizing neural network inputs. AIChE Journal, vol. 41, N. 6, pp. 1471-1480, June 1995.
    • (1995) AIChE Journal , vol.41 , Issue.6 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 14
    • 0029342346 scopus 로고
    • Detection of Gross errors in data reconciliation by Principal Component Analysis
    • July
    • Tong H. and Crowe C. M., Detection of Gross errors in data reconciliation by Principal Component Analysis. Process systems engineering, vol. 41, N. 7, July 1995.
    • (1995) Process Systems Engineering , vol.41 , Issue.7
    • Tong, H.1    Crowe, C.M.2
  • 15
    • 0036605005 scopus 로고    scopus 로고
    • A k-segments algorithm for finding principal curves
    • Verbeek J. J., Vlassis N. and Krose B., A k-segments algorithm for finding principal curves. Pattern Recognition Letters, vol. 23, pp. 1009-1017, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1009-1017
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3
  • 16
    • 21344434075 scopus 로고    scopus 로고
    • An approach to nonlinear principal component analysis using radially symmetric kernel functions
    • Webb A. R., An approach to nonlinear principal component analysis using radially symmetric kernel functions. Statist. Comput., vol. 6, pp. 159-168, 1996.
    • (1996) Statist. Comput. , vol.6 , pp. 159-168
    • Webb, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.