-
4
-
-
0000323474
-
Central limit theorems for non-linear functionals of Gaussian fields
-
Breuer, P. and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13, 425-441.
-
(1983)
J. Multivariate Anal.
, vol.13
, pp. 425-441
-
-
Breuer, P.1
Major, P.2
-
5
-
-
0001884067
-
Characterising surface smoothness via estimation of effective fractal dimension
-
Constantine, A. G. and Hall, P. (1994). Characterising surface smoothness via estimation of effective fractal dimension. J. Roy. Statist. Soc. Ser. B 56, 97-113.
-
(1994)
J. Roy. Statist. Soc. Ser. B
, vol.56
, pp. 97-113
-
-
Constantine, A.G.1
Hall, P.2
-
6
-
-
0033474256
-
Fractal analysis of surface roughness by using spatial data
-
Davies, S. and Hall, P. (1999). Fractal analysis of surface roughness by using spatial data (with discussion). J. Roy. Statist. Soc. Ser. B 61, 3-37.
-
(1999)
J. Roy. Statist. Soc. Ser. B
, vol.61
, pp. 3-37
-
-
Davies, S.1
Hall, P.2
-
7
-
-
13844294706
-
Noncentral limit theorems for nonlinear functions of Gaussian fields
-
Dobrushin, R. L. and Major, P. (1979). Noncentral limit theorems for nonlinear functions of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50, 27-52.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 27-52
-
-
Dobrushin, R.L.1
Major, P.2
-
8
-
-
0001501756
-
Evaluating the fractal dimension of surfaces
-
Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J. F. and Wehbi, D. (1989). Evaluating the fractal dimension of surfaces. Proc. Roy. Soc. London A 425, 113-127.
-
(1989)
Proc. Roy. Soc. London A
, vol.425
, pp. 113-127
-
-
Dubuc, B.1
Zucker, S.W.2
Tricot, C.3
Quiniou, J.F.4
Wehbi, D.5
-
10
-
-
84981374637
-
Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings
-
Feuerverger, A., Hall, P. and Wood, A. T. A. (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 15, 587-606.
-
(1994)
J. Time Ser. Anal.
, vol.15
, pp. 587-606
-
-
Feuerverger, A.1
Hall, P.2
Wood, A.T.A.3
-
11
-
-
0000062845
-
On the relationship between fractal dimension and fractal index for stationary stochastic processes
-
Hall, P. and Roy, R. (1994). On the relationship between fractal dimension and fractal index for stationary stochastic processes. Ann. Appl. Probab. 4, 241-253.
-
(1994)
Ann. Appl. Probab.
, vol.4
, pp. 241-253
-
-
Hall, P.1
Roy, R.2
-
12
-
-
0000413704
-
On the performance of box-counting estimators of fractal dimension
-
Hall, P. and Wood, A. T. A. (1993). On the performance of box-counting estimators of fractal dimension. Biometrika 80, 246-252.
-
(1993)
Biometrika
, vol.80
, pp. 246-252
-
-
Hall, P.1
Wood, A.T.A.2
-
13
-
-
0031521238
-
Quadratic variations and estimation of the local Hölder index of a Gaussian process
-
Istas, J. and Lang, G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré (Probabilités and Statistiques) 33, 407-436.
-
(1997)
Ann. Inst. Henri Poincaré (Probabilités and Statistiques)
, vol.33
, pp. 407-436
-
-
Istas, J.1
Lang, G.2
-
14
-
-
0347133428
-
Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
-
Centre for Mathematics and Its Applications, Australian National University, Canberra
-
Kent, J. T. and Wood, A. T. A. (1995). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. Statistics Research Report SRR 034-95. Centre for Mathematics and Its Applications, Australian National University, Canberra.
-
(1995)
Statistics Research Report SRR 034-95
-
-
Kent, J.T.1
Wood, A.T.A.2
-
15
-
-
14244255625
-
Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
-
Kent, J. T. and Wood, A. T. A. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59, 679-699.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 679-699
-
-
Kent, J.T.1
Wood, A.T.A.2
-
17
-
-
6244232696
-
Fractal character of fracture surfaces of metals
-
Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J. (1982). Fractal character of fracture surfaces of metals. Nature 308, 721-722.
-
(1982)
Nature
, vol.308
, pp. 721-722
-
-
Mandelbrot, B.B.1
Passoja, D.E.2
Paullay, A.J.3
-
18
-
-
84959238860
-
Multiple Wiener-Itô Integrals
-
Springer-Verlag, Berlin/New York
-
Major, P. (1981). Multiple Wiener-Itô Integrals. Lecture Notes in Mathematics. Vol. 849. Springer-Verlag, Berlin/New York.
-
(1981)
Lecture Notes in Mathematics
, vol.849
-
-
Major, P.1
-
19
-
-
0037695447
-
Gaussian sample functions and Hausdorff dimension of level crossings
-
Orey, S. (1970). Gaussian sample functions and Hausdorff dimension of level crossings. Z. Wahrsch. Verw. Gebiete 15, 249-256.
-
(1970)
Z. Wahrsch. Verw. Gebiete
, vol.15
, pp. 249-256
-
-
Orey, S.1
-
20
-
-
34250409798
-
Weak convergence to fractional Brownian motion and to the Rosenblatt process
-
Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 3, 287-302.
-
(1975)
Z. Wahrsch. Verw. Gebiete
, vol.3
, pp. 287-302
-
-
Taqqu, M.S.1
-
21
-
-
34250296747
-
Law of the iterated logarithm for sums of non-linear functions of Gaussian variables
-
Taqqu, M. S. (1977). Law of the iterated logarithm for sums of non-linear functions of Gaussian variables. Z. Wahrsch. Verw. Gebiete 40, 203-238.
-
(1977)
Z. Wahrsch. Verw. Gebiete
, vol.40
, pp. 203-238
-
-
Taqqu, M.S.1
-
22
-
-
84974022175
-
The measure theory of random fractals
-
Taylor, S. J. (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100, 383-406.
-
(1986)
Math. Proc. Camb. Phil. Soc.
, vol.100
, pp. 383-406
-
-
Taylor, S.J.1
-
25
-
-
0001350527
-
Fractals and engineering surface roughness
-
Thomas, T. R. and Thomas, A. P. (1988). Fractals and engineering surface roughness. Surface Topography 1, 143-152.
-
(1988)
Surface Topography
, vol.1
, pp. 143-152
-
-
Thomas, T.R.1
Thomas, A.P.2
|