메뉴 건너뛰기




Volumn 3, Issue 1, 2005, Pages 61-77

Bayesian network learning with feature abstraction for gene-drug dependency analysis

Author keywords

Bayesian networks; Feature abstraction; Gene drug dependency analysis; Microarray

Indexed keywords

5 AZA 2' DEOXYCYTIDINE; ANTINEOPLASTIC AGENT; ASPARTATE AMMONIA LIGASE; AZACITIDINE; BETA1 INTEGRIN; COLCHICINE; CYSTEINE DERIVATIVE; DIHYDROPYRIMIDINE DEHYDROGENASE; DNA; FLUOROURACIL; PACLITAXEL; PROUROKINASE; VINBLASTINE SULFATE;

EID: 14544287454     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720005000874     Document Type: Article
Times cited : (10)

References (24)
  • 2
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS, Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks, Proc Natl Acad Sci USA 97 22):12182-12186, 2000.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , Issue.22 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 3
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D, Using Bayesian networks to analyze expression data, J Comput Biol 7(3/4):601-620, 2000.
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 4
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D, Regev A, Elidan G, Friedman N, Inferring subnetworks from perturbed expression profiles, Bioinformatics 17(Suppl 1):S215-5224, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 5
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA, Combining location and expression data for principled discovery of genetic regulatory network models, Pacific Symposium on Biocomputing 7:437-449, 2002.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 6
  • 8
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh H, Horimoto K, Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling, Bioinformatics 18(2):287-297, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 9
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N, Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data, Nat Genet 34(2):166-176, 2003.
    • (2003) Nat. Genet. , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 10
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • Jordan MI (ed.), MIT Press, Cambridge
    • Friedman N, Goldszmidt M, Learning Bayesian networks with local structure, in Jordan MI (ed.), Learning in Graphical Models, pp. 421-459, MIT Press, Cambridge, 1999.
    • (1999) Learning in Graphical Models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 11
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM, Learning Bayesian networks: The combination of knowledge and statistical data, Mach Learn 20 3):197-243, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 12
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N, Koller D, Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks, Mach Learn 50(1):95-125, 2003.
    • (2003) Mach. Learn. , vol.50 , Issue.1 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 15
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon IS, Modha DM, Concept decompositions for large sparse text data using clustering, Mach Learn 42(1): 143-175 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.1 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.M.2
  • 16
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Lin J, Divergence measures based on the Shannon entropy, IEEE T Inform Theor 37(1):145-151, 1991.
    • (1991) IEEE T Inform. Theor. , vol.37 , Issue.1 , pp. 145-151
    • Lin, J.1
  • 17
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J, Valencia A, Dopazo J, A hierarchical unsupervised growing neural network for clustering gene expression patterns, Bioinformatics 17(2):126-136, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 18
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters
    • Lukashin AV, Fuchs R, Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters, Bioinformatics 17(5):405-414, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 19
    • 14544286718 scopus 로고    scopus 로고
    • Analysis of gene expression profiles and drug activity patterns by clustering and Bayesian network learning
    • Lin SM, Johnson KE, (eds.), Kluwer Academic Publishers
    • Chang J-H, Hwang K-B, Zhang B-T, Analysis of gene expression profiles and drug activity patterns by clustering and Bayesian network learning, in Lin SM, Johnson KE, (eds.), Methods of Microarray Data Analysis II (Proceedings of CAMDA'01), pp. 169-184, Kluwer Academic Publishers, 2002.
    • (2002) Methods of Microarray Data Analysis II (Proceedings of CAMDA'01) , pp. 169-184
    • Chang, J.-H.1    Hwang, K.-B.2    Zhang, B.-T.3
  • 20
    • 0025401005 scopus 로고
    • Computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper GF, Computational complexity of probabilistic inference using Bayesian belief networks, Artif Intell 42(2-3):393-405, 1990.
    • (1990) Artif. Intell. , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 21
    • 0030765564 scopus 로고    scopus 로고
    • Plasmin induces the formation of multicellular spheroids of breast cancer cells
    • Chun MH, Plasmin induces the formation of multicellular spheroids of breast cancer cells, Cancer Lett 117(1):51-56, 1997.
    • (1997) Cancer Lett. , vol.117 , Issue.1 , pp. 51-56
    • Chun, M.H.1
  • 22
    • 0035899331 scopus 로고    scopus 로고
    • Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells
    • Aoudjit F, Vuori K, Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells, Oncogene 20 36):4995-5004, 2001.
    • (2001) Oncogene , vol.20 , Issue.36 , pp. 995-5004
    • Aoudjit, F.1    Vuori, K.2
  • 23
    • 0035942170 scopus 로고    scopus 로고
    • Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia
    • Magdinier F, Wolffe AP, Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia, Proc Natl Acad Sci USA 98(9):4990-4995, 2001.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , Issue.9 , pp. 4990-4995
    • Magdinier, F.1    Wolffe, A.P.2
  • 24
    • 0035912061 scopus 로고    scopus 로고
    • p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53
    • Lindstroem MS, Klangby U, Wiman KG, p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53, Oncogene 20(17): 2171-2177, 2001.
    • (2001) Oncogene , vol.20 , Issue.17 , pp. 2171-2177
    • Lindstroem, M.S.1    Klangby, U.2    Wiman, K.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.