-
1
-
-
0038637051
-
-
For some recent examples: (a) Morita, T.; Kimura, S. J. Am. Chem. Soc. 2003, 125, 8732-8733. (b) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.; Willner, I. Science 2003, 299, 1877-1881. (c) Yamada, H.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 9129-9139. (d) Long, Y.; Li, C.; Sunderland, T. C.; Chahma, M.; Lee, J. S.; Kraatz, H. J. Am. Chem. Soc. 2003, 125, 8724-8725.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 8732-8733
-
-
Morita, T.1
Kimura, S.2
-
2
-
-
0037459369
-
-
For some recent examples: (a) Morita, T.; Kimura, S. J. Am. Chem. Soc. 2003, 125, 8732-8733. (b) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.; Willner, I. Science 2003, 299, 1877-1881. (c) Yamada, H.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 9129-9139. (d) Long, Y.; Li, C.; Sunderland, T. C.; Chahma, M.; Lee, J. S.; Kraatz, H. J. Am. Chem. Soc. 2003, 125, 8724-8725.
-
(2003)
Science
, vol.299
, pp. 1877-1881
-
-
Xiao, Y.1
Patolsky, F.2
Katz, E.3
Hainfeld, J.4
Willner, I.5
-
3
-
-
0042868648
-
-
For some recent examples: (a) Morita, T.; Kimura, S. J. Am. Chem. Soc. 2003, 125, 8732-8733. (b) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.; Willner, I. Science 2003, 299, 1877-1881. (c) Yamada, H.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 9129-9139. (d) Long, Y.; Li, C.; Sunderland, T. C.; Chahma, M.; Lee, J. S.; Kraatz, H. J. Am. Chem. Soc. 2003, 125, 8724-8725.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 9129-9139
-
-
Yamada, H.1
Imahori, H.2
Nishimura, Y.3
Yamazaki, I.4
Ahn, T.K.5
Kim, S.K.6
Kim, D.7
Fukuzumi, S.8
-
4
-
-
0037960883
-
-
For some recent examples: (a) Morita, T.; Kimura, S. J. Am. Chem. Soc. 2003, 125, 8732-8733. (b) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.; Willner, I. Science 2003, 299, 1877-1881. (c) Yamada, H.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 9129-9139. (d) Long, Y.; Li, C.; Sunderland, T. C.; Chahma, M.; Lee, J. S.; Kraatz, H. J. Am. Chem. Soc. 2003, 125, 8724-8725.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 8724-8725
-
-
Long, Y.1
Li, C.2
Sunderland, T.C.3
Chahma, M.4
Lee, J.S.5
Kraatz, H.6
-
5
-
-
11944257247
-
-
Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce A. M. J. Am. Chem. Soc. 1990, 112, 4301-4306.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 4301-4306
-
-
Chidsey, C.E.D.1
Bertozzi, C.R.2
Putvinski, T.M.3
Mujsce, A.M.4
-
6
-
-
0033077879
-
-
(a) Yan, L.; Huck, W. T.; Zhao, X.; Whitesides, G. M. Langmuir 1999, 15, 1208-1214.
-
(1999)
Langmuir
, vol.15
, pp. 1208-1214
-
-
Yan, L.1
Huck, W.T.2
Zhao, X.3
Whitesides, G.M.4
-
8
-
-
0000267101
-
-
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. 2001, 113, 1198-1220; Angew. Chem., Int. Ed. 2001, 40, 2004-2021.
-
(2001)
Angew. Chem.
, vol.113
, pp. 1198-1220
-
-
Kolb, H.C.1
Finn, M.G.2
Sharpless, K.B.3
-
9
-
-
0000096835
-
-
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. 2001, 113, 1198-1220; Angew. Chem., Int. Ed. 2001, 40, 2004-2021.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 2004-2021
-
-
-
11
-
-
0004230584
-
-
Worth Publishers Inc.: New York
-
As specific examples, the β carbon of benzoquinone reacts readily with nucleophiles and cyclopentadiene is prone to spontaneous dimerization at room temperature. The Diels-Alder adduct between cyclo-pentadiene and benzoquinone has been observed to slowly revert at room temperature. See: (a) Kemp, D. S.; Vellaccio, F. Organic Chemistry; Worth Publishers Inc.: New York, 1980; pp 758, 1108. (b) Pool, B. E.; White, J. M. Org. Lett. 2000, 22, 3505-3507.
-
(1980)
Organic Chemistry
, pp. 758
-
-
Kemp, D.S.1
Vellaccio, F.2
-
12
-
-
0001513680
-
-
As specific examples, the β carbon of benzoquinone reacts readily with nucleophiles and cyclopentadiene is prone to spontaneous dimerization at room temperature. The Diels-Alder adduct between cyclo-pentadiene and benzoquinone has been observed to slowly revert at room temperature. See: (a) Kemp, D. S.; Vellaccio, F. Organic Chemistry; Worth Publishers Inc.: New York, 1980; pp 758, 1108. (b) Pool, B. E.; White, J. M. Org. Lett. 2000, 22, 3505-3507.
-
(2000)
Org. Lett.
, vol.22
, pp. 3505-3507
-
-
Pool, B.E.1
White, J.M.2
-
13
-
-
0013064237
-
-
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. 2002, 114, 2708-2711; Angew. Chem. Int Ed. 2002, 41, 2596-2599.
-
(2002)
Angew. Chem.
, vol.114
, pp. 2708-2711
-
-
Rostovtsev, V.V.1
Green, L.G.2
Fokin, V.V.3
Sharpless, K.B.4
-
14
-
-
0037099395
-
-
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. 2002, 114, 2708-2711; Angew. Chem. Int Ed. 2002, 41, 2596-2599.
-
(2002)
Angew. Chem. Int Ed.
, vol.41
, pp. 2596-2599
-
-
-
15
-
-
0037021535
-
-
Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C. J. Am. Chem. Soc. 2002, 124, 14397-14402.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 14397-14402
-
-
Fazio, F.1
Bryan, M.C.2
Blixt, O.3
Paulson, J.C.4
Wong, C.5
-
16
-
-
0032659431
-
-
Synthesis adapted from: Shon, Y.; Kelly, K. F.; Halas, N. J.; Lee, T. R. Langmuir 1999, 15, 5329-5332. See Supporting Information for full experimental details.
-
(1999)
Langmuir
, vol.15
, pp. 5329-5332
-
-
Shon, Y.1
Kelly, K.F.2
Halas, N.J.3
Lee, T.R.4
-
17
-
-
0006163257
-
-
Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559-3568.
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 3559-3568
-
-
Porter, M.D.1
Bright, T.B.2
Allara, D.L.3
Chidsey, C.E.D.4
-
18
-
-
0347833128
-
-
Ferroceneacetylenes were synthesized following previously published literature procedures, (a) Rosenblum, M.; Brawn, N.; Papenmeier, J.; Applebaum, M. J. Organomet. Chem. 1966, 6, 173-180. (b) Barriga, S.; Marcos, C. F.; Riant, O.; Torroba, T. Tetrahedron 2002, 58, 9785-9792.
-
(1966)
J. Organomet. Chem.
, vol.6
, pp. 173-180
-
-
Rosenblum, M.1
Brawn, N.2
Papenmeier, J.3
Applebaum, M.4
-
19
-
-
0037010821
-
-
Ferroceneacetylenes were synthesized following previously published literature procedures, (a) Rosenblum, M.; Brawn, N.; Papenmeier, J.; Applebaum, M. J. Organomet. Chem. 1966, 6, 173-180. (b) Barriga, S.; Marcos, C. F.; Riant, O.; Torroba, T. Tetrahedron 2002, 58, 9785-9792.
-
(2002)
Tetrahedron
, vol.58
, pp. 9785-9792
-
-
Barriga, S.1
Marcos, C.F.2
Riant, O.3
Torroba, T.4
-
22
-
-
0032513716
-
-
(b) Offord, D. A.; Sachs, S. B.; Ennis, M. S.; Eberspacher, T. A.; Griffin, J. H.; Chidsey, C. E. D.; Collman, J. P. J. Am. Chem. Soc. 1998, 120, 4478-4487.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 4478-4487
-
-
Offord, D.A.1
Sachs, S.B.2
Ennis, M.S.3
Eberspacher, T.A.4
Griffin, J.H.5
Chidsey, C.E.D.6
Collman, J.P.7
-
23
-
-
1442276939
-
-
note
-
Ad values were -0.3 and -0.4 for 2 and 3, respectively.
-
-
-
-
24
-
-
1442350392
-
-
note
-
Where γ is equal to the mole fraction of azidoundecanethiol compared to total thiol in the deposition solution.
-
-
-
-
28
-
-
0035807655
-
-
(b) Calvente, J. J.; Andreau, R.; Molero, M.; Ferez, G.; Dominguez, M. J. Phys. Chem. B 2001, 105, 9557-9568.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 9557-9568
-
-
Calvente, J.J.1
Andreau, R.2
Molero, M.3
Ferez, G.4
Dominguez, M.5
-
29
-
-
0347192214
-
-
The location of the asymmetric vibration of the azido group is located between 2170 and 2080 for nearly all organic azides. Ramachandra, C. N.; Chao, T. S.; Huffman, C. W. W. Anal. Chem. 1957, 29, 916-918.
-
(1957)
Anal. Chem.
, vol.29
, pp. 916-918
-
-
Ramachandra, C.N.1
Chao, T.S.2
Huffman, C.W.W.3
-
30
-
-
5244297041
-
-
(a) Snyder, R. G.; Strauss, H. L.; Elliger, C. A. J. Phys. Chem. 1982, 86, 5145-5150.
-
(1982)
J. Phys. Chem.
, vol.86
, pp. 5145-5150
-
-
Snyder, R.G.1
Strauss, H.L.2
Elliger, C.A.3
-
31
-
-
0001372579
-
-
Wollman, E.; Kang, D.; Frisbie, C. D.; Lorkovic, I. M.; Wrighton, M. S. J. Am. Chem. Soc. 1994, 16, 4395-4404.
-
(1994)
J. Am. Chem. Soc.
, vol.16
, pp. 4395-4404
-
-
Wollman, E.1
Kang, D.2
Frisbie, C.D.3
Lorkovic, I.M.4
Wrighton, M.S.5
-
32
-
-
1442301471
-
-
note
-
An analysis of the electrochemical data reveals that the pseudo-first-order rate constant of product accumulation appears to increase such that the reaction is complete at 3 h even though the degree of completion at 1h predicts that a longer time would be required. This suggests an increase in catalyst activity as the reaction proceeds.
-
-
-
-
34
-
-
0001231433
-
-
Padwa, A., Ed.; Wiley: New York, Chapter 5
-
Lwowski, W. In 1,3 Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, Chapter 5.
-
(1984)
1,3 Dipolar Cycloaddition Chemistry
, vol.1
-
-
Lwowski, W.1
|