-
3
-
-
0000064866
-
-
M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Commun. 109, 389 (1999); W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999); M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999); K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 60, 11 285 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 394
-
-
Lilly, M.P.1
Cooper, K.B.2
Eisenstein, J.P.3
Pfeiffer, L.N.4
West, K.W.5
-
4
-
-
0032757254
-
-
M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Commun. 109, 389 (1999); W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999); M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999); K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 60, 11 285 (1999).
-
(1999)
Solid State Commun.
, vol.109
, pp. 389
-
-
Du, R.R.1
Tsui, D.C.2
Stormer, H.L.3
Pfeiffer, L.N.4
Baldwin, K.W.5
West, K.W.6
-
5
-
-
0000468153
-
-
M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Commun. 109, 389 (1999); W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999); M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999); K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 60, 11 285 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 820
-
-
Pan, W.1
Du, R.R.2
Stormer, H.L.3
Tsui, D.C.4
Pfeiffer, L.N.5
Baldwin, K.W.6
West, K.W.7
-
6
-
-
4244021944
-
-
M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Commun. 109, 389 (1999); W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999); M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999); K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 60, 11 285 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 824
-
-
Lilly, M.P.1
Cooper, K.B.2
Eisenstein, J.P.3
Pfeiffer, L.N.4
West, K.W.5
-
7
-
-
0001002571
-
-
M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Commun. 109, 389 (1999); W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999); M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999); K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 60, 11 285 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 11285
-
-
Cooper, K.B.1
Lilly, M.P.2
Eisenstein, J.P.3
Pfeiffer, L.N.4
West, K.W.5
-
8
-
-
14344277581
-
-
cond-mat/9903405
-
M. Shayegan, H. C. Manoharan, S. J. Papadakis, and E. P. DePoortere, cond-mat/9903405; S. J. Papadakis, E. P. DePoortere, M. Shayegan, and R. Winkler, cond-mat/9911239.
-
-
-
Shayegan, M.1
Manoharan, H.C.2
Papadakis, S.J.3
DePoortere, E.P.4
-
9
-
-
14344268974
-
-
cond-mat/9911239
-
M. Shayegan, H. C. Manoharan, S. J. Papadakis, and E. P. DePoortere, cond-mat/9903405; S. J. Papadakis, E. P. DePoortere, M. Shayegan, and R. Winkler, cond-mat/9911239.
-
-
-
Papadakis, S.J.1
DePoortere, E.P.2
Shayegan, M.3
Winkler, R.4
-
10
-
-
0001522225
-
-
A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996); M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 499
-
-
Koulakov, A.A.1
Fogler, M.M.2
Shklovskii, B.I.3
-
11
-
-
0001140986
-
-
A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996); M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 1853
-
-
Fogler, M.M.1
Koulakov, A.A.2
Shklovskii, B.I.3
-
14
-
-
14344279494
-
-
note
-
It was argued in Ref. [11] that the stripe crystal can become unstable to the proliferation of vacancies and interstitials due to quantum fluctuations. If hopping of electrons between stripes is not allowed, the resulting state is very likely the same as the smectic.
-
-
-
-
15
-
-
14344277989
-
-
note
-
Monte Carlo studies of the nematic state in an orientational ordering potential (Ref. [10]) may explain the temperature dependence of transport anisotropy in these systems when T is not too small. At very low temperatures, however, a smectic is classically stable against the formation of isolated dislocations in the presence of orientational anisotropy, suggesting a smectic ground state when quantum fluctuations are small (as is typical in high Landau levels). Nevertheless, one cannot completely rule out the possibility of a nematic ground state stabilized by large quantum fluctuations, although the detailed mechanism is not obvious at this point.
-
-
-
-
22
-
-
25944477808
-
-
R. Côté and A. H. MacDonald, Phys. Rev. Lett. 65, 2662 (1990); Phys. Rev. B 44, 8759 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 8759
-
-
-
23
-
-
14344282807
-
-
Animations of density deformation as a function of time ρ(t) have been obtained in Ref. [14] using the TDHFA. They may be found at http:// www.physique.usherb.ca/~rcote/stripes/stripes.htm.
-
-
-
-
26
-
-
14344285170
-
-
note
-
A → 0, the charge motion becomes parallel to the stripes and G · u remains small.
-
-
-
-
27
-
-
0003517281
-
-
Cambridge University Press, New York, yield the same result. A similar analysis has also been performed in Ref. [11]
-
Both a simple momentum-shell renormalization group analysis and a more standard one as in, for example, P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, New York, 1995) yield the same result. A similar analysis has also been performed in Ref. [11].
-
(1995)
Principles of Condensed Matter Physics
-
-
Chaikin, P.M.1
Lubensky, T.C.2
-
28
-
-
14344283403
-
-
note
-
We note that in Ref. [14] the modulated stripes become unstable and undergo a second-order phase transition at Δν = 0.4, which appears to involve the development of stronger modulations along the stripes at lower filling factors. While the elastic constants should be continuous through this transition, the locking perturbation may increase quickly, so that the transition to stripe crystal is likely to be close to Δν = 0.4 in our model.
-
-
-
-
29
-
-
0003440282
-
-
Cambridge University Press, Cambridge, England, Chap. 10
-
A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, England, 1998), Chap. 10.
-
(1998)
Bosonization and Strongly Correlated Systems
-
-
Gogolin, A.O.1
Nersesyan, A.A.2
Tsvelik, A.M.3
|