-
7
-
-
0004117638
-
-
Springer, Berlin, in particular Chap. 4.5
-
A. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998), in particular Chap. 4.5.
-
(1998)
Quantum Dots
-
-
Jacak, A.L.1
Hawrylak, P.2
Wojs, A.3
-
10
-
-
0001942334
-
-
edited by R. E. Prange and S. M. Girvin (Springer, New York)
-
R. B. Laughlin, in The Quantum Hall Effect, edited by R. E. Prange and S. M. Girvin (Springer, New York, 1987), p. 233.
-
(1987)
The Quantum Hall Effect
, pp. 233
-
-
Laughlin, R.B.1
-
13
-
-
13944257435
-
-
note
-
In previous publications the RWM wave functions were also referred to as rotating-electron-molecule (REM) wave functions.
-
-
-
-
14
-
-
13944283033
-
-
note
-
The results in Figs. 1-5 were obtained without consideration of a confinement, and they are not influenced (high B) by inclusion of a parabolic confinement [Refs. 3, 6, and 17], For the influence of the confinement on the energies, see Refs. 3, 6, and 17.
-
-
-
-
17
-
-
11444249983
-
-
C. Yannouleas and U. Landman, J. Phys.: Condens. Matter 14, L591 (2002); Phys. Rev. B 68, 035325 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 035325
-
-
-
20
-
-
42749100671
-
-
G. S. Jeon, C.-C. Chang, and J. K. Jain, J. Phys.: Condens. Matter 16, L271 (2004); Phys. Rev. B 69, 241304 (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 241304
-
-
-
29
-
-
0000679805
-
-
C. Yannouleas and U. Landman, Phys. Rev. Lett. 82, 5325 (1999); Phys. Rev. B 61, 15895 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 15895
-
-
-
32
-
-
85088488706
-
-
note
-
1 corresponds to the (1, N-1) arrangement of the N-electron Wigner molecule. The (0, N) arrangement is found to be the global ground state for a limited range of values of the fractional filling factor v near v = 1.
-
-
-
-
34
-
-
85088492719
-
-
note
-
0= 1/11.
-
-
-
-
35
-
-
13944269608
-
-
note
-
We remark that, at present, computational difficulties prohibit a straightforward extrapolation of energy to the thermodynamic limit as a function of N and v. This is the case especially for the disk geometry used here, which is advantageous for studies of crystalline structures, compared to the computationally easier spherical geometry.
-
-
-
-
36
-
-
0003517283
-
-
Addison-Wesley, Reading, MA, in particular
-
P. W. Anderson, Basic Notions of Condensed Matter Physics (Addison-Wesley, Reading, MA, 1984), in particular pp. 44-47.
-
(1984)
Basic Notions of Condensed Matter Physics
, pp. 44-47
-
-
Anderson, P.W.1
-
37
-
-
13944254802
-
-
See p. 44 of Ref. 33
-
See p. 44 of Ref. 33.
-
-
-
-
39
-
-
1542448666
-
-
For the subtleties of calculating in the presence of confinement the edge current from wave functions restricted in the lowest Landau level, see R. Rajaraman and S. L. Sondhi, Mod. Phys. Lett. B 8, 1065 (1994).
-
(1994)
Mod. Phys. Lett. B
, vol.8
, pp. 1065
-
-
Rajaraman, R.1
Sondhi, S.L.2
-
40
-
-
0037192990
-
-
W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 88, 176802 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 176802
-
-
Pan, W.1
Stormer, H.L.2
Tsui, D.C.3
Pfeiffer, L.N.4
Baldwin, K.W.5
West, K.W.6
-
42
-
-
13944265313
-
-
note
-
We remark, however, that the stabilization energy and the gap Δ diminish as the magnetic field increases (see Figs. 6 and 8), and as a result the impurities become more efficient in influencing the WM for the lower fractional fillings (i.e., higher angular momenta).
-
-
-
|