-
4
-
-
0035848295
-
-
V. V. Ryazanov, V. A. Oboznov, A. Yu Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2427
-
-
Ryazanov, V.V.1
Oboznov, V.A.2
Yu Rusanov, A.3
Veretennikov, A.V.4
Golubov, A.A.5
Aarts, J.6
-
5
-
-
14944382090
-
-
T. Kontos, M. Aprili, J. Lesueur, and X. Orison, Phys. Rev. Lett. 86, 304 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 304
-
-
Kontos, T.1
Aprili, M.2
Lesueur, J.3
Orison, X.4
-
9
-
-
0000451376
-
-
S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3247
-
-
Upadhyay, S.K.1
Palanisami, A.2
Louie, R.N.3
Buhrman, R.A.4
-
10
-
-
3543147072
-
-
R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
-
(1998)
Science
, vol.282
, pp. 85
-
-
Soulen Jr., R.J.1
Byers, J.M.2
Osofsky, M.S.3
Nadgorny, B.4
Ambrose, T.5
Cheng, S.F.6
Broussard, P.R.7
Tanaka, C.T.8
Nowak, J.9
Moodera, J.S.10
Barry, A.11
Coey, J.M.D.12
-
14
-
-
0000457641
-
-
N. M. Chtchelkatchev, W. Belzig, Yu. V. Nazarov, and C. Bruder, JETP Lett. 74, 323 (2001).
-
(2001)
JETP Lett.
, vol.74
, pp. 323
-
-
Chtchelkatchev, N.M.1
Belzig, W.2
Nazarov, Yu.V.3
Bruder, C.4
-
17
-
-
19744381687
-
-
K. Halterman and O. T. Valls, Phys. Rev. B 65, 014509 (2001); 70, 104516 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 104516
-
-
-
18
-
-
2142650863
-
-
M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Phys. Rev. Lett. 90, 137003 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 137003
-
-
Eschrig, M.1
Kopu, J.2
Cuevas, J.C.3
Schön, G.4
-
24
-
-
13844273771
-
-
note
-
"Quasiclassical" refers usually to the three-dimensional- quasiclassical theory of superconductivity also called the energy-integrated Green function's theory in which the fast spatial oscillations of the Gorkov Green's functions have been integrated out. The resulting quasiclassical Green's functions depend only on the center-of-mass coordinates. In this framework, the current is expressed as a sum of contributions corresponding to different straight line trajectories labeled by a angle θ. In this article, we discuss the purely one-dimensional case and "quasiclassical" refers to the θ=0 contribution of the full quasiclassical result.
-
-
-
-
27
-
-
13844286523
-
-
note
-
In the superconducting point-contact geometry, two large superconducting reservoirs are connected to a narrow normal metal or ferromagnet. In this situation, the modification of Δ(x) may be neglected whereas for uniform-width junctions the pair potential is suppressed near the FS or NS interfaces. In the point-contact case, the width of the wire connecting the large leads to the thin ferromagnetic strip should have a slow spatial variation in order to avoid backscattering of electrons coming from the superconductors.
-
-
-
-
31
-
-
0000808154
-
-
J. Bardeen, R. Kümmel, A. E. Jacobs, and L. Tewordt, Phys. Rev. 187, 556 (1969).
-
(1969)
Phys. Rev.
, vol.187
, pp. 556
-
-
Bardeen, J.1
Kümmel, R.2
Jacobs, A.E.3
Tewordt, L.4
|