메뉴 건너뛰기




Volumn 38, Issue 5, 2005, Pages 637-649

Scalable model-based cluster analysis using clustering features

Author keywords

Cluster analysis; Clustering feature; Convergence; Data mining; Expectation maximization; Gaussian mixture model; Scalable

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; DATA MINING; ITERATIVE METHODS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; MIXTURES; PARAMETER ESTIMATION; PROBABILITY; SET THEORY;

EID: 13644262819     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2004.07.012     Document Type: Article
Times cited : (25)

References (23)
  • 4
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A new data clustering algorithm and its applications
    • T. Zhang, R. Ramakrishnan, and M. Livny BIRCH a new data clustering algorithm and its applications Data Min. Knowl. Disc. 1 2 1997 141 182
    • (1997) Data Min. Knowl. Disc. , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 5
    • 2442719356 scopus 로고    scopus 로고
    • Expanding self-organizing map for data visualization and cluster analysis
    • H.-D. Jin, W. Shum, K.-S. Leung, and M.-L. Wong Expanding self-organizing map for data visualization and cluster analysis Inform. Sci. 163 1-3 2004 157 173
    • (2004) Inform. Sci. , vol.163 , Issue.1-3 , pp. 157-173
    • Jin, H.-D.1    Shum, W.2    Leung, K.-S.3    Wong, M.-L.4
  • 7
    • 0032312273 scopus 로고    scopus 로고
    • Modelling facial colour and identity with Gaussian mixtures
    • S. McKenna, S. Gong, and Y. Raja Modelling facial colour and identity with Gaussian mixtures Pattern Recognition 31 1998 1883 1892
    • (1998) Pattern Recognition , vol.31 , pp. 1883-1892
    • McKenna, S.1    Gong, S.2    Raja, Y.3
  • 8
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • C. Fraley Algorithms for model-based Gaussian hierarchical clustering SIAM J. Sci. Comput. 20 1 1999 270 281
    • (1999) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 270-281
    • Fraley, C.1
  • 10
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G. McLachlan, R. Bean, and D. Peel A mixture model-based approach to the clustering of microarray expression data Bioinformatics 18 2002 413 422
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.1    Bean, R.2    Peel, D.3
  • 11
    • 0042209912 scopus 로고    scopus 로고
    • Model-based clustering and visualization of navigation patterns on a web site
    • I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White Model-based clustering and visualization of navigation patterns on a web site Data Min. Knowl. Disc. 7 4 2003 399 424
    • (2003) Data Min. Knowl. Disc. , vol.7 , Issue.4 , pp. 399-424
    • Cadez, I.1    Heckerman, D.2    Meek, C.3    Smyth, P.4    White, S.5
  • 12
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux, and G. Govaert Gaussian parsimonious clustering models Pattern Recognition 28 5 1995 781 793
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 13
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • U. Fayyad Menlo Park, CA USA*et al.
    • P. Cheeseman, and J. Stutz Bayesian classification (AutoClass) theory and results U. Fayyad Advances in Knowledge Discovery and Data Mining 1996 Menlo Park, CA USA 153 180
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 14
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin Maximum-likelihood from incomplete data via the EM algorithm J. Roy. Statist. Soc. Ser. B 39 1977 1 38
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 15
    • 0037735771 scopus 로고    scopus 로고
    • Asymptotic convergence rate of the EM algorithm for Gaussian mixtures
    • J. Ma, L. Xu, and M. Jordan Asymptotic convergence rate of the EM algorithm for Gaussian mixtures Neural Comput. 12 12 2000 2881 2907
    • (2000) Neural Comput. , vol.12 , Issue.12 , pp. 2881-2907
    • Ma, J.1    Xu, L.2    Jordan, M.3
  • 17
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. Jordan MIT Press Cambridge, MA
    • R. Neal, and G. Hinton A view of the EM algorithm that justifies incremental, sparse, and other variants M. Jordan Learning in Graphical Models 1999 MIT Press Cambridge, MA 355 368
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 18
    • 0002678075 scopus 로고    scopus 로고
    • Compressed data cubes for OLAP aggregate query approximation on continuous dimensions
    • San Diego, USA
    • J. Shanmugasundaram, U. Fayyad, and P. Bradley Compressed data cubes for OLAP aggregate query approximation on continuous dimensions Proceedings of the Fifth ACM SIGKDD San Diego, USA 1999 223 232
    • (1999) Proceedings of the Fifth ACM SIGKDD , pp. 223-232
    • Shanmugasundaram, J.1    Fayyad, U.2    Bradley, P.3
  • 19
    • 0034826101 scopus 로고    scopus 로고
    • An experimental comparison of model-based clustering methods
    • M. Meilǎ, and D. Heckerman An experimental comparison of model-based clustering methods Mach. Learn. 42 1/2 2001 9 29
    • (2001) Mach. Learn. , vol.42 , Issue.12 , pp. 9-29
    • Meilǎ, M.1    Heckerman, D.2
  • 20
    • 0035575419 scopus 로고    scopus 로고
    • Accelerating EM for large databases
    • B. Thiesson, C. Meek, and D. Heckerman Accelerating EM for large databases Mach. Learn. 45 2001 279 299
    • (2001) Mach. Learn. , vol.45 , pp. 279-299
    • Thiesson, B.1    Meek, C.2    Heckerman, D.3
  • 21
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution KD-trees
    • M. Kearns, D. Cohn (Eds.)
    • A. Moore, Very fast EM-based mixture model clustering using multiresolution KD-trees, in: M. Kearns, D. Cohn (Eds.), Advances in Neural Information Processing Systems, vol. 11, 1999, pp. 543-549.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 543-549
    • Moore, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.