-
1
-
-
0012846395
-
Graph powers
-
(B. Bollobás, ed.), Bolyai Society Mathematical Studies, Springer MR 2003h:05181
-
N. Alon, Graph Powers, Contemporary Combinatorics (B. Bollobás, ed.), Bolyai Society Mathematical Studies, Springer 2002, pp. 11-28. MR 2003h:05181
-
(2002)
Contemporary Combinatorics
, pp. 11-28
-
-
Alon, N.1
-
2
-
-
0002499786
-
A combinatorial packing problem
-
SIAM-AMS Proc., Providence, American Mathematical Society; MR 49:2437
-
L. Baumert, R. McEliece, E. Rodemich, H. Rumsey, R. Stanley, H. Taylor, A Combinatorial Packing Problem, Computers in Algebra and Number Theory, SIAM-AMS Proc., vol. 4, Providence, American Mathematical Society; 1971, pp. 97-108. MR 49:2437
-
(1971)
Computers in Algebra and Number Theory
, vol.4
, pp. 97-108
-
-
Baumert, L.1
McEliece, R.2
Rodemich, E.3
Rumsey, H.4
Stanley, R.5
Taylor, H.6
-
3
-
-
17744417388
-
Motivations and history of some of my conjectures
-
MR 98a:05091
-
C. Berge, Motivations and history of some of my conjectures Discrete Mathematics 165 (1997), 61-70. MR 98a:05091
-
(1997)
Discrete Mathematics
, vol.165
, pp. 61-70
-
-
Berge, C.1
-
4
-
-
0142200024
-
A limit theorem for the Shannon capacities of odd cycles I
-
T. Bohman, A limit theorem for the Shannon capacities of odd cycles I, Proceedings of the AMS 131 (2003), 3559-3569.
-
(2003)
Proceedings of the AMS
, vol.131
, pp. 3559-3569
-
-
Bohman, T.1
-
5
-
-
0037353792
-
A nontrivial lower bound on the Shannon capacities of the complements of odd cycles
-
MR 2004b:94039
-
T. Bohman, R. Holzman, A nontrivial lower bound on the Shannon capacities of the complements of odd cycles, IEEE Transactions on Information Theory, 49(3) (2003), 721-722. MR 2004b:94039
-
(2003)
IEEE Transactions on Information Theory
, vol.49
, Issue.3
, pp. 721-722
-
-
Bohman, T.1
Holzman, R.2
-
6
-
-
0034446703
-
Shannon capacity of large odd cycles
-
June 25-30, Sorrento, Italy
-
T. Bohman, M. Ruszinkó, L. Thoma, Shannon capacity of large odd cycles, Proceedings of the 2000 IEEE International Symposium on Information Theory, June 25-30, Sorrento, Italy, p. 179.
-
Proceedings of the 2000 IEEE International Symposium on Information Theory
, pp. 179
-
-
Bohman, T.1
Ruszinkó, M.2
Thoma, L.3
-
8
-
-
0000436105
-
Numerical invariants and the strong product of graphs
-
MR 48:177
-
R. S. Hales, Numerical invariants and the strong product of graphs, Journal of Combinatorial Theory - B, 15 (1973), 146-155. MR 48:177
-
(1973)
Journal of Combinatorial Theory - B
, vol.15
, pp. 146-155
-
-
Hales, R.S.1
-
10
-
-
0018292109
-
On the Shannon capacity of a graph
-
MR81g:05095
-
L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25(1) (1979), 1-7. MR81g:05095
-
(1979)
IEEE Transactions on Information Theory
, vol.25
, Issue.1
, pp. 1-7
-
-
Lovász, L.1
-
11
-
-
84938009281
-
The zero-error capacity of a noisy channel
-
MR 19:623b
-
C. E. Shannon, The zero-error capacity of a noisy channel, IRE Transactions on Information Theory, 2(3) (1956), 8-19. MR 19:623b
-
(1956)
IRE Transactions on Information Theory
, vol.2
, Issue.3
, pp. 8-19
-
-
Shannon, C.E.1
|