-
1
-
-
0032411859
-
The Shannon capacity of a union
-
MR 20001:05096
-
N. Alon, The Shannon capacity of a union, Combinatorica, 18 (1998), 301-310. MR 20001:05096
-
(1998)
Combinatorica
, vol.18
, pp. 301-310
-
-
Alon, N.1
-
2
-
-
0002499786
-
A Combinatorial Packing Problem
-
American Mathematical Society, Providence, RI. MR 49:2437
-
L. Baumert, R. McEliece, E. Rodemich, H. Rumsey, R. Stanley, and H. Taylor, A Combinatorial Packing Problem, Computers in Algebra and Number Theory, American Mathematical Society, Providence, RI, 1971, pp. 97-108. MR 49:2437
-
(1971)
Computers in Algebra and Number Theory
, pp. 97-108
-
-
Baumert, L.1
McEliece, R.2
Rodemich, E.3
Rumsey, H.4
Stanley, R.5
Taylor, H.6
-
3
-
-
0142163491
-
Balanced hypergraphs and some applications to graph theory
-
North-Holland, Amsterdam and London. MR 51:2970
-
C. Berge, Balanced hypergraphs and some applications to graph theory. A survey of combinatorial theory, North-Holland, Amsterdam and London, 1973. MR 51:2970
-
(1973)
A Survey of Combinatorial Theory
-
-
Berge, C.1
-
4
-
-
0034446703
-
Shannon capacity of large odd cycles
-
June 25-30, Sorrento, Italy
-
T. Bohman, M. Ruszinkó, and L. Thoma, Shannon capacity of large odd cycles, Proceedings of the 2000 IEEE International Symposium on Information Theory, June 25-30, Sorrento, Italy, p. 179.
-
(2000)
Proceedings of the 2000 IEEE International Symposium on Information Theory
, pp. 179
-
-
Bohman, T.1
Ruszinkó, M.2
Thoma, L.3
-
5
-
-
0013515394
-
On some problems of Lovász concerning the Shannon capacity of a graph
-
MR 80g:94040
-
W. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25(2) (1979), 231-232. MR 80g:94040
-
(1979)
IEEE Transactions on Information Theory
, vol.25
, Issue.2
, pp. 231-232
-
-
Haemers, W.1
-
7
-
-
0000436105
-
Numerical invariants and the strong product of graphs
-
MR 48:177
-
R. S. Hales, Numerical invariants and the strong product of graphs, Journal of Combinatorial Theory - B, 15 (1973), 146-155. MR 48:177
-
(1973)
Journal of Combinatorial Theory - B
, vol.15
, pp. 146-155
-
-
Hales, R.S.1
-
9
-
-
0018292109
-
On the Shannon capacity of a graph
-
MR 81g:05095
-
L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25(1) (1979), 1-7. MR 81g:05095
-
(1979)
IEEE Transactions on Information Theory
, vol.25
, Issue.1
, pp. 1-7
-
-
Lovász, L.1
-
10
-
-
0043267229
-
The Lovasz bound and some generalizations
-
MR 80a:05168
-
R. J. McEliece, E. R. Rodemich, and H. C. Rumsey, The Lovasz bound and some generalizations, Journal of Combinatorics, Information and Systems Science 3 (1978), 134-152. MR 80a:05168
-
(1978)
Journal of Combinatorics, Information and Systems Science
, vol.3
, pp. 134-152
-
-
McEliece, R.J.1
Rodemich, E.R.2
Rumsey, H.C.3
|