-
1
-
-
0005235678
-
A topological invariant arising in the analysis of traveling waves
-
AGJ
-
[AGJ] ALEXANDER, J., GARDNER, R., JONES, C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167-212 (1990)
-
(1990)
J. Reine Angew. Math.
, vol.410
, pp. 167-212
-
-
Alexander, J.1
Gardner, R.2
Jones, C.K.R.T.3
-
2
-
-
0000310274
-
Existence d'ondes de raréfaction pour des sytèmes quasi-linéaires hyperboliques multidimensionnels
-
Al
-
[Al] ALINHAC, S.: Existence d'ondes de raréfaction pour des sytèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Diff. Equ. 14, 173-230 (1989)
-
(1989)
Comm. Partial Diff. Equ.
, vol.14
, pp. 173-230
-
-
Alinhac, S.1
-
4
-
-
0001191104
-
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
-
Bo
-
[Bo] BONY, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sc. E.N.S. Paris 14, 209-246 (1981)
-
(1981)
Ann. Sc. E.N.S. Paris
, vol.14
, pp. 209-246
-
-
Bony, J.M.1
-
5
-
-
0003992612
-
-
[Ch-P] Translated from the French. Studies in Mathematics and its Applications. 14. North-Holland Publishing Co., Amsterdam-New York, ISBN: 0-444-86452-0
-
[Ch-P] CHAZARAIN, J., PIRIOU, A.: Introduction to the theory of linear partial differential equations. Translated from the French. Studies in Mathematics and its Applications. 14. North-Holland Publishing Co., Amsterdam-New York, 1982. xiv+559 pp. ISBN: 0-444-86452-0
-
(1982)
Introduction to the Theory of Linear Partial Differential Equations
-
-
Chazarain, J.1
Piriou, A.2
-
8
-
-
0001472248
-
Nerve axon equations: I, Einear approximations
-
E1
-
[E1] EVANS, J.W.: Nerve axon equations: I, Einear approximations. Ind. Univ. Math. J. 21, 877-885 (1972)
-
(1972)
Ind. Univ. Math. J.
, vol.21
, pp. 877-885
-
-
Evans, J.W.1
-
9
-
-
0001472247
-
Nerve axon equations: II, Stability at rest
-
E2
-
[E2] EVANS, J.W.: Nerve axon equations: II, Stability at rest. Ind, Univ. Math. J. 22, 75-90 (1972)
-
(1972)
Ind, Univ. Math. J.
, vol.22
, pp. 75-90
-
-
Evans, J.W.1
-
10
-
-
0001472246
-
Nerve axon equations: III, Stability of the nerve impulse
-
E3
-
[E3] EVANS, J.W.: Nerve axon equations: III, Stability of the nerve impulse. Ind. Univ. Math. J. 22, 577-593 (1972)
-
(1972)
Ind. Univ. Math. J.
, vol.22
, pp. 577-593
-
-
Evans, J.W.1
-
11
-
-
0016578299
-
Nerve axon equations: IV, the stable and the unstable impulse
-
E4
-
[E4] EVANS, J.W.: Nerve axon equations: IV, The stable and the unstable impulse. Ind. Univ. Math. J. 24, 1169-1190 (1975)
-
(1975)
Ind. Univ. Math. J.
, vol.24
, pp. 1169-1190
-
-
Evans, J.W.1
-
13
-
-
0001054919
-
Remarks on the stability of viscous shock waves
-
[Go1] Raleigh, NC, 1990, SIAM. Philadelphia, PA
-
[Go1] GOODMAN, J.: Remarks on the stability of viscous shock waves. In: Viscous profiles and numerical methods for shock waves. (Raleigh, NC, 1990), 66-72, SIAM. Philadelphia, PA, 1991
-
(1991)
Viscous Profiles and Numerical Methods for Shock Waves
, pp. 66-72
-
-
Goodman, J.1
-
14
-
-
33646885643
-
Stability of viscous scalar shock fronts in several dimensions
-
Go2
-
[Go2] GOODMAN, J.: Stability of viscous scalar shock fronts in several dimensions. Trans. Amer. Math. Soc. 311, 683-695 (1989)
-
(1989)
Trans. Amer. Math. Soc.
, vol.311
, pp. 683-695
-
-
Goodman, J.1
-
15
-
-
0001261417
-
Long-time behavior of scalar viscous shock fronts in two dimensions
-
GM
-
[GM] GOODMAN, J., MILLER, J.R.: Long-time behavior of scalar viscous shock fronts in two dimensions. J. Dynam. Diff. Eqns. 11, 255-277 (1999)
-
(1999)
J. Dynam. Diff. Eqns.
, vol.11
, pp. 255-277
-
-
Goodman, J.1
Miller, J.R.2
-
16
-
-
13544255690
-
Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability
-
[GMWZ1] To appear
-
[GMWZ1] GUÈS, O., MÉTIVIER, G., WILLIAMS, M., ZUMBRUN, K.: Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability. To appear in J. Amer. Math. Soc.
-
J. Amer. Math. Soc.
-
-
Guès, O.1
Métivier, G.2
Williams, M.3
Zumbrun, K.4
-
17
-
-
2442542401
-
Multidimensional viscous shocks II: The small viscosity limit
-
GMWZ2
-
[GMWZ2] GUÈS, O., MÉTIVIER, G., WILLIAMS, M., ZUMBRUN, K.: Multidimensional viscous shocks II: The small viscosity limit. Comm. Pure Appl. Math. 57, 141-218 (2004)
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, pp. 141-218
-
-
Guès, O.1
Métivier, G.2
Williams, M.3
Zumbrun, K.4
-
18
-
-
84860081645
-
-
[GMWZ3] In preparation
-
[GMWZ3] GUÈS, O., MÉTIVIER, G., WILLIAMS, M., ZUMBRUN, K.: Navier-Stokes regularization of multidimensional Euler shocks. In preparation
-
Navier-Stokes Regularization of Multidimensional Euler Shocks
-
-
Guès, O.1
Métivier, G.2
Williams, M.3
Zumbrun, K.4
-
19
-
-
0036057861
-
Curved shocks as viscous limits: A boundary problem approach
-
GW
-
[GW] GUÈS, O., WILLIAMS, M.: Curved shocks as viscous limits: a boundary problem approach. Indiana Univ. Math. J. 51, 421-450 (2002)
-
(2002)
Indiana Univ. Math. J.
, vol.51
, pp. 421-450
-
-
Guès, O.1
Williams, M.2
-
20
-
-
21144475728
-
Viscous limits for piecewise smooth solutions to systems of conservation laws
-
GX
-
[GX] GOODMAN, J., XIN, Z.: Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Rational Mech. Anal. 121, 235-265 (1992)
-
(1992)
Arch. Rational Mech. Anal.
, vol.121
, pp. 235-265
-
-
Goodman, J.1
Xin, Z.2
-
21
-
-
0040942605
-
The Gap Lemma and geometric criteria for instability of viscous shock profiles
-
GZ
-
[GZ] GARDNER, R., ZUMBRUN, K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure. Appl. Math. 51, 797-855 (1998)
-
(1998)
Comm. Pure. Appl. Math.
, vol.51
, pp. 797-855
-
-
Gardner, R.1
Zumbrun, K.2
-
22
-
-
0000591519
-
Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
-
HoZ
-
[HoZ] HOFF, D., ZUMBRUN, K.: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603-676 (1995)
-
(1995)
Indiana Univ. Math. J.
, vol.44
, pp. 603-676
-
-
Hoff, D.1
Zumbrun, K.2
-
24
-
-
84980172444
-
Initial boundary value problems for hyperbolic systems
-
Kr
-
[Kr] KREISS, H.O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277-298 (1970)
-
(1970)
Comm. Pure Appl. Math.
, vol.23
, pp. 277-298
-
-
Kreiss, H.O.1
-
25
-
-
0001733359
-
The stability of multi-dimensional shock fronts - A new problem for linear hyperbolic equations
-
Maj
-
[Maj] MAJDA, A.: The stability of multi-dimensional shock fronts - a new problem for linear hyperbolic equations. Mem. Am. Math. Soc. 275 (1983)
-
(1983)
Mem. Am. Math. Soc.
, pp. 275
-
-
Majda, A.1
-
26
-
-
0001267475
-
Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace
-
Mél
-
[Mél] METIVIER, G.: Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace. Trans. Amer. Math. Soc. 296, 431-479 (1986)
-
(1986)
Trans. Amer. Math. Soc.
, vol.296
, pp. 431-479
-
-
Metivier, G.1
-
27
-
-
84860088737
-
Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems
-
[MZ1] To appear
-
[MZ1] MÉTIVIER, G., ZUMBRUN, K.: Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems. To appear in Mem. Am. Math. Soc.
-
Mem. Am. Math. Soc.
-
-
Métivier, G.1
Zumbrun, K.2
-
28
-
-
2942694472
-
Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems
-
MZ2
-
[MZ2] MÉTIVIER, G., ZUMBRUN, K.: Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Disc. Cont. Dyn. Syst. 11, 205-220 (2004)
-
(2004)
Disc. Cont. Dyn. Syst.
, vol.11
, pp. 205-220
-
-
Métivier, G.1
Zumbrun, K.2
-
29
-
-
0002141527
-
-
Mey Supplemento al Rendiconti der Circolo Matematico di Palermo, Serie II, No1
-
[Mey] MEYER, Y.: Remarques sur un théorème de J.M.Bony. Supplemento al Rendiconti der Circolo Matematico di Palermo, Serie II, No1, 1981
-
(1981)
Remarques Sur Un Théorème de J.M.Bony
-
-
Meyer, Y.1
-
32
-
-
2942657954
-
An Evans function approach to spectral stability of small-amplitude shock profiles
-
PZ
-
[PZ] PLAZA, R., ZUMBRUN, K.: An Evans function approach to spectral stability of small-amplitude shock profiles. Disc. Cont. Dyn. Syst. 10, 885-924 (2004)
-
(2004)
Disc. Cont. Dyn. Syst.
, vol.10
, pp. 885-924
-
-
Plaza, R.1
Zumbrun, K.2
-
33
-
-
0035368187
-
Inviscid boundary conditions and stability of viscous boundary layers
-
Ro1
-
[Ro1] ROUSSET, F.: Inviscid boundary conditions and stability of viscous boundary layers. Asymptot. Anal. 26, 285-306 (2001)
-
(2001)
Asymptot. Anal.
, vol.26
, pp. 285-306
-
-
Rousset, F.1
-
34
-
-
1642587248
-
Viscous approximation of strong shocks of systems of conservation laws
-
Ro2
-
[Ro2] ROUSSET, F.: Viscous approximation of strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35, 492-519 (2003)
-
(2003)
SIAM J. Math. Anal.
, vol.35
, pp. 492-519
-
-
Rousset, F.1
-
36
-
-
0033416432
-
Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. ArcA
-
Yu
-
[Yu] Yu, S.-H.: Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. ArcA. Rational Mech. Anal. 146, 275-370 (1999)
-
(1999)
Rational Mech. Anal.
, vol.146
, pp. 275-370
-
-
Yu, S.-H.1
-
37
-
-
0001028485
-
Viscous and inviscid stability of multidimensional planar shock fronts
-
ZS
-
[ZS] ZUMBRUN, K., SERRE, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937-992 (1999)
-
(1999)
Indiana Univ. Math. J.
, vol.48
, pp. 937-992
-
-
Zumbrun, K.1
Serre, D.2
-
38
-
-
0001385446
-
-
[Zu1] Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston. Boston, MA
-
[Zu1] ZUMBRUN, K.: Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307-516, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston. Boston, MA, 2001
-
(2001)
Multidimensional Stability of Planar Viscous Shock Waves
, pp. 307-516
-
-
Zumbrun, K.1
-
39
-
-
0037804971
-
Refined Wave-tracking and Nonlinear Stability of Viscous Lax Shocks
-
Zu2
-
[Zu2] ZUMBRUN, K.: Refined Wave-tracking and Nonlinear Stability of Viscous Lax Shocks. Methods Appl. Anal. 7, 747-768 (2000)
-
(2000)
Methods Appl. Anal.
, vol.7
, pp. 747-768
-
-
Zumbrun, K.1
|