-
1
-
-
0005235678
-
A topological invariant arising in the analysis of traveling waves
-
[AGJ]
-
[AGJ] J. ALEXANDER, R. GARDNER & C. K. R. T. JONES, A topological invariant arising in the analysis of traveling waves, J. Reine Angew. Math. 410 (1990), 167-212.
-
(1990)
J. Reine Angew. Math.
, vol.410
, pp. 167-212
-
-
Alexander, J.1
Gardner, R.2
Jones, C.K.R.T.3
-
2
-
-
0016578299
-
Nerve axon equations: IV. The stable and the unstable impulse
-
[E]
-
[E] J.W. EVANS, Nerve axon equations: IV. The stable and the unstable impulse, Ind. Univ. Math. J. 24 (1975), 1169-1190.
-
(1975)
Ind. Univ. Math. J.
, vol.24
, pp. 1169-1190
-
-
Evans, J.W.1
-
3
-
-
0001356311
-
Persistence and smoothness of invariant manifolds and flows
-
[F1]
-
[F1] N. FENICHEL, Persistence and Smoothness of Invariant Manifolds and Flows, Indiana University Math. J. 21 (1971), 193-226.
-
(1971)
Indiana University Math. J.
, vol.21
, pp. 193-226
-
-
Fenichel, N.1
-
4
-
-
34250627892
-
Geometric singular perturbation theory
-
[F2]
-
[F2] N. FENICHEL, Geometric singular perturbation theory, Journal of Diff. Eq. 31 (1979), 53-98.
-
(1979)
Journal of Diff. Eq.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
5
-
-
2942661255
-
-
[GJ1] (Raleigh, NC, 1990), SIAM, Philadelphia, PA
-
[GJ1] R. GARDNER & C. K. R. T. JONES, Stability of one-dimensional waves in weak and singular limits. Viscous profiles and numerical methods for shock waves, (Raleigh, NC, 1990), 32-48, SIAM, Philadelphia, PA, 1991.
-
(1991)
Stability of One-Dimensional Waves in Weak and Singular Limits. Viscous Profiles and Numerical Methods for Shock Waves
, pp. 32-48
-
-
Gardner, R.1
Jones, C.K.R.T.2
-
6
-
-
84966244631
-
Stability of travelling wave solutions of diffusive predator-prey systems
-
[GJ2]
-
[GJ2] R. GARDNER & C. K. R. T. JONES, Stability of travelling wave solutions of diffusive predator-prey systems, Trans. Amer. Math. Soc. 327 (1991), 465-524.
-
(1991)
Trans. Amer. Math. Soc.
, vol.327
, pp. 465-524
-
-
Gardner, R.1
Jones, C.K.R.T.2
-
7
-
-
0040942605
-
The Gap Lemma and geometric criteria for instability of viscous shock profiles
-
[GZ]
-
[GZ] R. GARDNER & K. ZUMBRUN, The Gap Lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math. 51 (1998), 797-855.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 797-855
-
-
Gardner, R.1
Zumbrun, K.2
-
8
-
-
0022865466
-
Nonlinear asymptotic stability of viscous shock profiles for conservation laws
-
[Go]
-
[Go] J. GOODMAN, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), 325-344.
-
(1986)
Arch. Rational Mech. Anal.
, vol.95
, pp. 325-344
-
-
Goodman, J.1
-
11
-
-
84967743294
-
Stability of the travelling wave solution of the FitzHugh-Nagumo system
-
[J1]
-
[J1] C.K.R.T. JONES, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), 431-469.
-
(1984)
Trans. Amer. Math. Soc.
, vol.286
, pp. 431-469
-
-
Jones, C.K.R.T.1
-
12
-
-
0002316532
-
Geometric singular perturbation theory
-
[J2] Dynamical Systems
-
[J2] C.K.R.T. JONES, Geometric singular perturbation theory. In Dynamical Systems, Springer Lecture Notes Math. 1609, (1995), 44-120.
-
(1995)
Springer Lecture Notes Math.
, vol.1609
, pp. 44-120
-
-
Jones, C.K.R.T.1
-
13
-
-
84990556253
-
Stability of travelling waves for non-convex scalar viscous conservation laws
-
[JGK]
-
[JGK] C. K. R. T. JONES, R. A. GARDNER & T. KAPITULA, Stability of travelling waves for non-convex scalar viscous conservation laws, Comm. Pure Appl. Math. 46 (1993), 505-526.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 505-526
-
-
Jones, C.K.R.T.1
Gardner, R.A.2
Kapitula, T.3
-
14
-
-
0002348145
-
Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations
-
[KSd]
-
[KSd] T. KAPITULA & B. SANDSTEDE, Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Phys. D 124 (1998), 58-103.
-
(1998)
Phys. D
, vol.124
, pp. 58-103
-
-
Kapitula, T.1
Sandstede, B.2
-
16
-
-
84968504658
-
Nonlinear stability of shock waves for viscous conservation laws
-
[L]
-
[L] T.-P. LIU, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc. 56 (1985), no. 328.
-
(1985)
Mem. Amer. Math. Soc.
, vol.56
, Issue.328
-
-
Liu, T.-P.1
-
17
-
-
0002124586
-
Stable viscosity matrices for systems of conservation laws
-
[MPe]
-
[MPe] A. MAJDA & R.L. PEGO, Stable viscosity matrices for systems of conservation laws, J. Differential Equations 56 (1985), 229-262.
-
(1985)
J. Differential Equations
, vol.56
, pp. 229-262
-
-
Majda, A.1
Pego, R.L.2
-
19
-
-
67649363651
-
Stability of travelling waves
-
[Sd] (B. Fiedler, ed.), Elsevier
-
[Sd] B. SANDSTEDE, Stability of travelling waves. In Handbook of Dynamical Systems II, (B. Fiedler, ed.), Elsevier, 2002, 983-1055.
-
(2002)
Handbook of Dynamical Systems II
, pp. 983-1055
-
-
Sandstede, B.1
-
20
-
-
0000814275
-
On the stability of waves of nonlinear parabolic systems
-
[St]
-
[St] D.H. SATTINGER, On the stability of waves of nonlinear parabolic systems, Advances in Math. 22 (1976), 312-355.
-
(1976)
Advances in Math.
, vol.22
, pp. 312-355
-
-
Sattinger, D.H.1
-
21
-
-
44949272344
-
Transversal heteroclinic and homoclinic orbits in singular perturbation problems
-
[Sz]
-
[Sz] P. SZMOLYAN, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Diff. Eq. 92 (1991), 252-281.
-
(1991)
J. Diff. Eq.
, vol.92
, pp. 252-281
-
-
Szmolyan, P.1
-
22
-
-
21144471868
-
Nonlinear stability of viscous shock waves
-
[SyX]
-
[SyX] A. SZEPESSY & Z.-P. XIN, Nonlinear stability of viscous shock waves, Arch. Rational Mech. Anal. 122 (1993), 53-103.
-
(1993)
Arch. Rational Mech. Anal.
, vol.122
, pp. 53-103
-
-
Szepessy, A.1
Xin, Z.-P.2
-
23
-
-
0001385446
-
Multidimensional stability of planar viscous shock waves
-
[Z] Advances in the theory of shock waves, Birkhäuser Boston, Boston, MA
-
[Z] K. ZUMBRUN, Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307-516, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser Boston, Boston, MA, 2001.
-
(2001)
Progr. Nonlinear Differential Equations Appl.
, vol.47
, pp. 307-516
-
-
Zumbrun, K.1
-
24
-
-
0009378734
-
Pointwise semigroup methods and stability of viscous shock waves
-
[ZHo]
-
[ZHo] K. ZUMBRUN & P. HOWARD, Pointwise semigroup methods and stability of viscous shock waves, Indiana University Mathematics Journal 47 (1998), 741-871.
-
(1998)
Indiana University Mathematics Journal
, vol.47
, pp. 741-871
-
-
Zumbrun, K.1
Howard, P.2
|