-
4
-
-
0008511731
-
0 (N)
-
Ohio State Univ. Math. Res. Inst. Publ. 4. Berlin: de Gruyter
-
0 (N).” In Groups, Difference Sets and the Monster, pp. 327-343, Ohio State Univ. Math. Res. Inst. Publ. 4. Berlin: de Gruyter, 1996.
-
(1996)
Groups, Difference Sets and the Monster
, pp. 327-343
-
-
Conway, J.H.1
-
6
-
-
13244295532
-
Congruence Subgroups of Groups Commensurable with PSL2(ℤ) of Genus 0 and 1
-
2(ℤ) of Genus 0 and 1.” Exp. Math. 13: 3 (2004). 361-382.
-
(2004)
Exp. Math.
, vol.13
, Issue.3
, pp. 361-382
-
-
Cummins, C.1
-
7
-
-
0344927264
-
Congruence Subgroups of P5L2(ℤ) of Genus Less than or Equal to 24
-
2(ℤ) of Genus Less than or Equal to 24.” Exp. Math. 12: 2 (2003), 243-255.
-
(2003)
Exp. Math.
, vol.12
, Issue.2
, pp. 243-255
-
-
Cummins, C.1
Pauli, S.2
-
8
-
-
84974000545
-
The Genus-Zero Problem for n|h-Type Groups
-
C. R. Ferenbaugh. “The Genus-Zero Problem for n|h-Type Groups.” Duke Math. J. 72: 1 (1993), 31-63.
-
(1993)
Duke Math. J.
, vol.72
, Issue.1
, pp. 31-63
-
-
Ferenbaugh, C.R.1
-
9
-
-
85008554267
-
Modular Functions
-
Lecture Notes at The Ohio State University
-
K. Harada. Modular Functions, Modular Forms and Finite Groups, Lecture Notes at The Ohio State University, 1987.
-
(1987)
Modular Forms and Finite Groups
-
-
Harada, K.1
-
10
-
-
0039284445
-
Bestimmung der Kommensura- bilitasklasse der Hilbertschen Moulgruppe
-
H. Helling. “Bestimmung der Kommensura- bilitasklasse der Hilbertschen Moulgruppe.” Math. Z. 92 (1966), 269-280.
-
(1966)
Math. Z.
, vol.92
, pp. 269-280
-
-
Helling, H.1
-
12
-
-
0035402547
-
The Signature of (Formula presented)
-
M. L. Lang. “The Signature of (formula presented).” J. of Algebra 241 (2001), 146-185.
-
(2001)
J. Of Algebra
, vol.241
, pp. 146-185
-
-
Lang, M.L.1
-
13
-
-
84971124246
-
Groups of Units of Zero Ternary Quadratic Forms
-
C. Maclachlan. “Groups of Units of Zero Ternary Quadratic Forms.” Proc. Roy. Soc. Edinburgh 88A (1981), 141-157.
-
(1981)
Proc. Roy. Soc. Edinburgh
, vol.88A
, pp. 141-157
-
-
Maclachlan, C.1
-
14
-
-
3142761062
-
Torsion-Free Genus Zero Congruence Subgroups of PSL2(ℝ)
-
2(ℝ).” Duke Math. J. 110: 2 (2001), 376-396.
-
(2001)
Duke Math. J.
, vol.110
, Issue.2
, pp. 376-396
-
-
Sebbar, A.1
-
16
-
-
0003070492
-
A Finiteness Theorem for Subgroups of PSL2(ℝ) which Are Commensurable with PSL2(ℤ)
-
2(ℤ).” Proc. Symp. Pure Math. AMS 37 (1980), 533-555.
-
(1980)
Proc. Symp. Pure Math. AMS
, vol.37
, pp. 533-555
-
-
Thompson, J.G.1
-
17
-
-
0345618613
-
A Spectral Proof of Rademacher s Conjecture for Congruence Subgroups of the Modular Group
-
P. Zograf. “A Spectral Proof of Rademacher s Conjecture for Congruence Subgroups of the Modular Group.” J. reine angew. Math. 414 (1991), 113-116.
-
(1991)
J. Reine Angew. Math.
, vol.414
, pp. 113-116
-
-
Zograf, P.1
|