-
1
-
-
0040661449
-
Monstrous Moonshine and Monstrous Lie Superalgebras
-
R. E. Borcherds. “Monstrous Moonshine and Monstrous Lie Superalgebras.” Invent. Math. 109 (1992), 405-444.
-
(1992)
Invent. Math.
, vol.109
, pp. 405-444
-
-
Borcherds, R.E.1
-
2
-
-
0031232428
-
The Magma Algebra System I: The User Language
-
W. Bosma, J. J. Cannon, and C. Playoust. “The Magma Algebra System I: The User Language.” J. Symb. Comp. 40 (1997), 235-265.
-
(1997)
J. Symb. Comp.
, vol.40
, pp. 235-265
-
-
Bosma, W.1
Cannon, J.J.2
Playoust, C.3
-
3
-
-
0012371559
-
Computing the Subgroups of a Permutation Group
-
J. J. Cannon, B. C. Cox, and D F Holt. “Computing the Subgroups of a Permutation Group.” J. Symb. Comp. 31 (2001), 149-161.
-
(2001)
J. Symb. Comp.
, vol.31
, pp. 149-161
-
-
Cannon, J.J.1
Cox, B.C.2
Holt, D.F.3
-
6
-
-
0009448675
-
Genera of Congruence Subgroups in Q-Quaternion Algebras
-
D. A. Cox and W. R. Parry. “Genera of Congruence Subgroups in Q-Quaternion Algebras.” J. Reine Angew. Math. 351 (1984), 66-112.
-
(1984)
J. Reine Angew. Math.
, vol.351
, pp. 66-112
-
-
Cox, D.A.1
Parry, W.R.2
-
8
-
-
84972537186
-
Fields of Modular Functions of Genus 0
-
J. B. Dennin Jr. “Fields of Modular Functions of Genus 0.” Illinois J. Math. 15 (1971), 442-455.
-
(1971)
Illinois J. Math
, vol.15
, pp. 442-455
-
-
Dennin, J.B.1
-
12
-
-
84972492475
-
Congruence Subgroups of Positive Genus in the Modular Group
-
M. I. Knopp and M. Newman. “Congruence Subgroups of Positive Genus in the Modular Group.” Illinois J Math 9 (1965), 577-583.
-
(1965)
Illinois J Math
, vol.9
, pp. 577-583
-
-
Knopp, M.I.1
Newman, M.2
-
13
-
-
0002376893
-
Some Results on the Linear Fractional Group
-
D. L. McQuillan. “Some Results on the Linear Fractional Group.” Illinois J. Math. 10 (1966), 24-38.
-
(1966)
Illinois J. Math.
, vol.10
, pp. 24-38
-
-
McQuillan, D.L.1
-
14
-
-
84972545593
-
On the Genus of Fields of Elliptic Modular Functions
-
D. L. McQuillan. “On the Genus of Fields of Elliptic Modular Functions.” Illinois J. Math. 10 (1966), 479-487.
-
(1966)
Illinois J. Math.
, vol.10
, pp. 479-487
-
-
McQuillan, D.L.1
-
15
-
-
0040859117
-
A Complete Description of the Normal Subgroups of Genus One of the Modular Group
-
M. Newman. “A Complete Description of the Normal Subgroups of Genus One of the Modular Group.” Amer. J. Math. 86 (1964), 17-24.
-
(1964)
Amer. J. Math.
, vol.86
, pp. 17-24
-
-
Newman, M.1
-
16
-
-
84968518920
-
Normal Subgroups of the Modular Group which are Not Congruence Subgroups
-
M. Newman. “Normal Subgroups of the Modular Group which are Not Congruence Subgroups.” Proc. Amer. Math. Soc. 16 (1965), 831-832.
-
(1965)
Proc. Amer. Math. Soc.
, vol.16
, pp. 831-832
-
-
Newman, M.1
-
17
-
-
0344756216
-
Über die Konstruktion zykloi- der Kongruenzgruppen in der rationalen Modulgruppe
-
H. Petersson. “Über die Konstruktion zykloi- der Kongruenzgruppen in der rationalen Modulgruppe.” J. Reine Angew. Math. 250 (1971), 182-212.
-
(1971)
J. Reine Angew. Math.
, vol.250
, pp. 182-212
-
-
Petersson, H.1
-
18
-
-
23044525172
-
Classification of Torsion-Free Genus Zero Congruence Groups
-
electronic
-
A. Sebbar. “Classification of Torsion-Free Genus Zero Congruence Groups.” Proc. Amer. Math. Soc. 129:9 (2001), 2517-2527 (electronic).
-
(2001)
Proc. Amer. Math. Soc
, vol.129
, Issue.9
, pp. 2517-2527
-
-
Sebbar, A.1
-
20
-
-
0003070492
-
A Finiteness Theorem for Subgroups of PSL(2,ℝ) which are Commensurable with PSL(2, ℤ)
-
Proc. Sym. Pure. Math., 37. Providence, RI: Amer. Math. Soc
-
J. G. Thompson. “A Finiteness Theorem for Subgroups of PSL(2,ℝ) which are Commensurable with PSL(2, ℤ).” In Santa Cruz Conference on Finite Groups, pp. 533-555, Proc. Sym. Pure. Math., 37. Providence, RI: Amer. Math. Soc., 1980.
-
(1980)
Santa Cruz Conference on Finite Groups
, pp. 533-555
-
-
Thompson, J.G.1
-
21
-
-
0345618613
-
A Spectral Proof of Rademachers Conjecture for Congruence Subgroups of the Modular Group
-
P. Zograf. “A Spectral Proof of Rademacher’s Conjecture for Congruence Subgroups of the Modular Group.” J. Reine Angew. Math. 414 (1991), 113-116.
-
(1991)
J. Reine Angew. Math.
, vol.414
, pp. 113-116
-
-
Zograf, P.1
|