-
1
-
-
0032573499
-
-
G.A. Prinz, Science 282, 1660 (1998); A. Wolf et al., ibid. 294, 1488 (2001).
-
(1998)
Science
, vol.282
, pp. 1660
-
-
Prinz, G.A.1
-
2
-
-
0035900398
-
-
G.A. Prinz, Science 282, 1660 (1998); A. Wolf et al., ibid. 294, 1488 (2001).
-
(2001)
Science
, vol.294
, pp. 1488
-
-
Wolf, A.1
-
7
-
-
0142164079
-
-
X.D. Zhang, B.Z. Li, G. Sun, and F.C. Pu, Phys. Rev. B 56, 5484 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 5484
-
-
Zhang, X.D.1
Li, B.Z.2
Sun, G.3
Pu, F.C.4
-
9
-
-
4243062775
-
-
S. Zhang, P.M. Levy, A.C. Marley, and S.S.P. Parkin, Phys. Rev. Lett. 79, 3744 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3744
-
-
Zhang, S.1
Levy, P.M.2
Marley, A.C.3
Parkin, S.S.P.4
-
11
-
-
16644382618
-
-
A. Brataas, Yu.V. Nazarov, J. Inoue, and G.E.W. Bauer, Phys. Rev. B 59, 93 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 93
-
-
Brataas, A.1
Nazarov, Y.V.2
Inoue, J.3
Bauer, G.E.W.4
-
12
-
-
0001564476
-
-
L. Sheng, Y. Chen, H.Y. Teng, and C.S. Ting, Phys. Rev. B 59, 480 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 480
-
-
Sheng, L.1
Chen, Y.2
Teng, H.Y.3
Ting, C.S.4
-
13
-
-
0001529685
-
-
H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Phys. Rev. Lett. 84, 2682 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2682
-
-
Mehrez, H.1
Taylor, J.2
Guo, H.3
Wang, J.4
Roland, C.5
-
15
-
-
0037091649
-
-
N. Sergueev, Q.F. Sun, H. Guo, B.G. Wang, and J. Wang, Phys. Rev. B 65, 165303 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165303
-
-
Sergueev, N.1
Sun, Q.F.2
Guo, H.3
Wang, B.G.4
Wang, J.5
-
19
-
-
37649030173
-
-
L. Wang, J.J. Qiu, W.J. McMahon, K.B. Li, and Y.H. Wu, Phys. Rev. B 69, 214402 (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 214402
-
-
Wang, L.1
Qiu, J.J.2
McMahon, W.J.3
Li, K.B.4
Wu, Y.H.5
-
20
-
-
0038067267
-
-
For a recent review, see, for example, M.A. Ratner, Mater. Today 5, 20 (2002).
-
(2002)
Mater. Today
, vol.5
, pp. 20
-
-
Ratner, M.A.1
-
22
-
-
0001490590
-
-
N.D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515 (1998); Phys. Rev. Lett. 84, 358 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 358
-
-
-
23
-
-
0035881387
-
-
B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64, 075420 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 075420
-
-
Larade, B.1
Taylor, J.2
Mehrez, H.3
Guo, H.4
-
24
-
-
4243720937
-
-
The NEGF-DFT package MCDCAL is discussed in J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001); Phys. Rev. B 63, 121104(R) (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245407
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
25
-
-
0000512336
-
-
The NEGF-DFT package MCDCAL is discussed in J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001); Phys. Rev. B 63, 121104(R) (2001).
-
(2001)
Phys. Rev. B
, vol.63
-
-
-
26
-
-
0037091644
-
-
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165401
-
-
Brandbyge, M.1
Mozos, J.-L.2
Ordejón, P.3
Taylor, J.4
Stokbro, K.5
-
28
-
-
12344251326
-
-
In our calculations, an Al electrode is composed of unit cells with nine Al atoms oriented in the (100) direction repeated to ±∞. The scattering region contains four layers of the Al atoms on either side of the molecule. The carbon atoms in contact with the electrodes are positioned at the hollow site for Al electrodes. We fixed the contact distance to be d=2.0 Å. The separation between carbon atoms is 1.3225 Å (see Ref. 27)
-
In our calculations, an Al electrode is composed of unit cells with nine Al atoms oriented in the (100) direction repeated to ±∞. The scattering region contains four layers of the Al atoms on either side of the molecule. The carbon atoms in contact with the electrodes are positioned at the hollow site for Al electrodes. We fixed the contact distance to be d=2.0 Å. The separation between carbon atoms is 1.3225 Å (see Ref. 27).
-
-
-
-
29
-
-
12344324286
-
-
note
-
It would be better to use the lead made of transition metal rather than Al lead.
-
-
-
-
30
-
-
3342918541
-
-
H.J. Choi, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2917
-
-
Choi, H.J.1
Ihm, J.2
Louie, S.G.3
Cohen, M.L.4
-
31
-
-
12344292094
-
-
For carbon nanotubes, the orbital magnetic moment in the presence of an axial magnetic field can be 10 or 20 times of Bohr magneton (see Ref. 29)
-
For carbon nanotubes, the orbital magnetic moment in the presence of an axial magnetic field can be 10 or 20 times of Bohr magneton (see Ref. 29).
-
-
-
-
32
-
-
1842784822
-
-
E.D. Minot, Y. Yaish, V. Sazonova, and P.L. McEuen, Nature (London) 428, 536 (2004).
-
(2004)
Nature (London)
, vol.428
, pp. 536
-
-
Minot, E.D.1
Yaish, Y.2
Sazonova, V.3
McEuen, P.L.4
|