-
1
-
-
0000212150
-
On "multibump" bound states for certain semilinear elliptic equations
-
S. ALAMA AND Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992), 983-1026.
-
(1992)
Indiana Univ. Math. J.
, vol.41
, pp. 983-1026
-
-
Alama, S.1
Li, Y.Y.2
-
2
-
-
0020591567
-
Nonlinear scalar field equations I, existence of a ground state
-
H. BERESTYCKI AND P. L. LIONS, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313-345.
-
(1983)
Arch. Rational Mech. Anal.
, vol.82
, pp. 313-345
-
-
Berestycki, H.1
Lions, P.L.2
-
3
-
-
0001735158
-
Remarks on the Schrödinger operator with singular complex potentials
-
H. BREZIS AND T. KATO, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (a) 58 (1979), 137-151.
-
(1979)
J. Math. Pures Appl. (A)
, vol.58
, pp. 137-151
-
-
Brezis, H.1
Kato, T.2
-
5
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. COTI-ZELATI AND P. H. RABINOWITZ, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727.
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti-Zelati, V.1
Rabinowitz, P.H.2
-
6
-
-
84990556307
-
n
-
n, Comm. Pure Appl. Math. 45 (1992), 1217-1269.
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 1217-1269
-
-
-
8
-
-
0003259059
-
Elliptic partial differential equations of second order
-
2nd ed., Springer-Verlag, Berlin
-
D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, 1983.
-
(1983)
Grundlehren Math. Wiss.
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
9
-
-
0013559642
-
Existence of multibump solutions for nonlinear Schrödinger equations via variational method
-
C. GUI, Existence of multibump solutions for nonlinear Schrödinger equations via variational method, to appear in Comm. Partial Differential Equations.
-
Comm. Partial Differential Equations
-
-
Gui, C.1
-
10
-
-
84972508309
-
Uniqueness of the positive solution of Δu + f(u) = 0 in an annulus
-
M. K. KWONG AND L. ZHANG, Uniqueness of the positive solution of Δu + f(u) = 0 in an annulus, Differential Integral Equations 4 (1991), 583-599.
-
(1991)
Differential Integral Equations
, vol.4
, pp. 583-599
-
-
Kwong, M.K.1
Zhang, L.2
-
12
-
-
0002678736
-
4 and related problems
-
4 and related problems, J. Funct. Anal. 118 (1993), 43-118.
-
(1993)
J. Funct. Anal.
, vol.118
, pp. 43-118
-
-
-
13
-
-
0001675486
-
n and related problems, I
-
n and related problems, I, J. Differential Equations 120 (1995), 319-410.
-
(1995)
J. Differential Equations
, vol.120
, pp. 319-410
-
-
-
14
-
-
0002542873
-
Large amplitude stationary solutions to a chemotaxis system
-
C.-S. LIN, W.-M. Ni, AN I. TAKAGI, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27.
-
(1988)
J. Differential Equations
, vol.72
, pp. 1-27
-
-
Lin, C.-S.1
Ni, W.-M.2
Takagi, I.3
-
15
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations: The locally compact case, I
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations: The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; II, 223-283.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
16
-
-
85030707196
-
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations: The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; II, 223-283.
-
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.2
, pp. 223-283
-
-
-
17
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
W.-M. NI AND I. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851.
-
(1991)
Comm. Pure Appl. Math.
, vol.44
, pp. 819-851
-
-
Ni, W.-M.1
Takagi, I.2
-
18
-
-
84971179248
-
Locating the peaks of least-energy solutions to a semilinear Neumann problem
-
_, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
-
(1993)
Duke Math. J.
, vol.70
, pp. 247-281
-
-
-
19
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
E. SÉRÉ, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42.
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
|