메뉴 건너뛰기




Volumn 63, Issue SPEC. ISS., 2005, Pages 209-228

Bayesian decision theory on three-layer neural networks

Author keywords

Approximation; Bayesian decision; Direct connection; Layered neural network; Logistic transform

Indexed keywords

APPROXIMATION THEORY; INFORMATION ANALYSIS; MULTILAYER NEURAL NETWORKS; POISSON DISTRIBUTION;

EID: 12144259819     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.05.005     Document Type: Article
Times cited : (14)

References (13)
  • 2
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • K. Funahashi Multilayer neural networks and Bayes decision theory Neural Networks 11 1998 209-213
    • (1998) Neural Networks , vol.11 , pp. 209-213
    • Funahashi, K.1
  • 4
    • 33646243321 scopus 로고    scopus 로고
    • d and their applications to neural networks
    • in preparation
    • d and their applications to neural networks, in preparation.
    • Ito, Y.1
  • 5
    • 7544241169 scopus 로고    scopus 로고
    • Bayesian decision theory and three layered neural networks
    • Y. Ito C. Srinivasan Bayesian decision theory and three layered neural networks in: Proceedings of the ESANN2001 2001 377-382
    • (2001) Proceedings of the ESANN2001 , pp. 377-382
    • Ito, Y.1    Srinivasan, C.2
  • 6
    • 23044525372 scopus 로고    scopus 로고
    • Approximation of Bayesian discriminant function by neural networks in terms of Kullback-Leibler information
    • Springer Berlin
    • Y. Ito C. Srinivasan Approximation of Bayesian discriminant function by neural networks in terms of Kullback-Leibler information in: ICANN 2001, Lecture Notes in Computer Science Vol. 130 2001 Springer Berlin 135-140
    • (2001) ICANN 2001, Lecture Notes in Computer Science , vol.130 , pp. 135-140
    • Ito, Y.1    Srinivasan, C.2
  • 7
    • 12144265412 scopus 로고    scopus 로고
    • Multicategory Bayesian decision using a three-layer neural network
    • Springer Berlin
    • Y. Ito C. Srinivasan Multicategory Bayesian decision using a three-layer neural network in: Proceedings of the ICANN/ICONIP 2003 2003 Springer Berlin
    • (2003) Proceedings of the ICANN/ICONIP 2003
    • Ito, Y.1    Srinivasan, C.2
  • 8
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural network = review and case studies
    • J. Lampnen A. Vehtari Bayesian approach for neural network = review and case studies Neural Networks 14 2001 257-274
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampnen, J.1    Vehtari, A.2
  • 9
    • 0002704818 scopus 로고
    • A practical framework for back propagation networks
    • D.J.C. MacKay A practical framework for back propagation networks Neural Comput. 4 1992 448-472
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 10
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M.D. Richard R.P. Lipmann Neural network classifiers estimate Bayesian a posteriori probabilities Neural Comput. 3 1991 461-483
    • (1991) Neural Comput. , vol.3 , pp. 461-483
    • Richard, M.D.1    Lipmann, R.P.2
  • 11
    • 0002983776 scopus 로고
    • Statistical aspect of neural networks
    • O.E. Bardorff-Nielsen (Ed.)Chapman & Hall London
    • B.D. Ripley Statistical aspect of neural networks in: O.E. Bardorff-Nielsen (Ed.) Networks and Chaos-Statistical and Probabilistic Aspects 1993 Chapman & Hall London 40-123
    • (1993) Networks and Chaos-Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 13
    • 0000243355 scopus 로고
    • Learning in artificial neural networks
    • H. White Learning in artificial neural networks a statistical perspective Neural Comput. 1 1989 425-464
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.