메뉴 건너뛰기




Volumn 63, Issue SPEC. ISS., 2005, Pages 447-463

Neural network time series forecasting of finite-element mesh adaptation

Author keywords

Finite element method; Mesh adaptation; Neural networks; Time series prediction; Time dependent PDEs

Indexed keywords

FINITE ELEMENT METHOD; FORECASTING; LEARNING ALGORITHMS; NEURAL NETWORKS; NUMERICAL ANALYSIS; PARTIAL DIFFERENTIAL EQUATIONS; PROBLEM SOLVING;

EID: 12144258976     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.06.009     Document Type: Article
Times cited : (56)

References (21)
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko Approximation by superpositions of a sigmoidal function Math. Control Signal System 2 1989 303-314
    • (1989) Math. Control Signal System , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0026449851 scopus 로고
    • On learning the derivatives on an unknown mapping with multilayer feedforward networks
    • A.R. Gallant H. White On learning the derivatives on an unknown mapping with multilayer feedforward networks Neural Networks 5 1992 129-138
    • (1992) Neural Networks , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 9
    • 0030287229 scopus 로고    scopus 로고
    • Simulation of czochralski melt flows using parallel adaptive finite element procedures
    • D. Givoli J.E. Flaherty M.S. Shephard Simulation of czochralski melt flows using parallel adaptive finite element procedures Modelling Simul. Mater. Sci Eng. 4 1996 623-639
    • (1996) Modelling Simul. Mater. Sci. Eng. , vol.4 , pp. 623-639
    • Givoli, D.1    Flaherty, J.E.2    Shephard, M.S.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward network are universal approximators
    • K. Hornik M. Stinchcombe H. White Multilayer feedforward network are universal approximators Neural Networks 2 1989 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with non-polynomial activation functions can approximate any continuous function
    • M. Leshno V. Lin A. Pinkus D. Schocken Multilayer feedforward networks with non-polynomial activation functions can approximate any continuous function Neural Networks 6 1993 861-867
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, D.4
  • 13
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • K. Levenberg A method for the solution of certain problems in least squares Quart. Appl. Math. 2 1944 164-168
    • (1944) Quart. Appl. Math. , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 14
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • D. Marquardt An algorithm for least-squares estimation of nonlinear parameters SIAM J. Appl. Math. 11 1963 431-441
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 19
    • 12144262636 scopus 로고
    • Approximating functions by neural networks
    • M. Shoham M. Meltser L. Manevitz Approximating functions by neural networks a constructive solution in the uniform norm Neural Networks 9 6 1993 861-867
    • (1993) Neural Networks , vol.9 , Issue.6 , pp. 861-867
    • Shoham, M.1    Meltser, M.2    Manevitz, L.3
  • 20
    • 0025488663 scopus 로고
    • 30 years of adaptive neural network
    • B. Widrow M. Lehr 30 years of adaptive neural network perceptron, madaline, and backpropagation Proc. IEEE 78 9 1990 1415-1442
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.