-
2
-
-
0030677149
-
Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics
-
A. E. Giannakopoulos and P.-L. Larsson, "Analysis of Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics," Mech. Mater., 25, 1-35 (1997).
-
(1997)
Mech. Mater.
, vol.25
, pp. 1-35
-
-
Giannakopoulos, A.E.1
Larsson, P.-L.2
-
4
-
-
0036803744
-
Depth-sensing indentation at macroscopic dimensions
-
J. Thurn, D. J. Morris, and R. F. Cook, "Depth-Sensing Indentation at Macroscopic Dimensions," J. Mater. Res., 17 [10] 2679-90 (2002).
-
(2002)
J. Mater. Res.
, vol.17
, Issue.10
, pp. 2679-2690
-
-
Thurn, J.1
Morris, D.J.2
Cook, R.F.3
-
5
-
-
0032309890
-
A new look at the influences of load, grain size, and grain Boundaries on the room temperature hardness of ceramics,"
-
A. Krell, "A New Look at the Influences of Load, Grain Size, and Grain Boundaries on the Room Temperature Hardness of Ceramics," Int. J. Refract. Hard Mater., 16, 331-35 (1998).
-
(1998)
Int. J. Refract. Hard Mater.
, vol.16
, pp. 331-335
-
-
Krell, A.1
-
6
-
-
0028531483
-
Hardness-grain size relations in ceramics
-
R. W. Rice, C. Cm. Wu, and F. Borchelt, "Hardness-Grain Size Relations in Ceramics," J. Am. Ceram. Soc., 77 [10] 2539-53 (1994).
-
(1994)
J. Am. Ceram. Soc.
, vol.77
, Issue.10
, pp. 2539-2553
-
-
Rice, R.W.1
Wu Cm, C.2
Borchelt, F.3
-
7
-
-
0025014365
-
On the microhardness of silicon nitride and sialon ceramics
-
A. K. Murkhopadhyay, S. K. Datta, and D. Chakraborty, "On the Microhardness of Silicon Nitride and Sialon Ceramics," J. Eur. Ceram. Soc., 6, 303-11 (1990).
-
(1990)
J. Eur. Ceram. Soc.
, vol.6
, pp. 303-311
-
-
Murkhopadhyay, A.K.1
Datta, S.K.2
Chakraborty, D.3
-
8
-
-
0031207278
-
Indentation brittleness of ceramics: A fresh approach
-
J. B. Quinn and G. D. Quinn, "Indentation Brittleness of Ceramics: A Fresh Approach," J. Mater. Sci., 32, 4331-36 (1997).
-
(1997)
J. Mater. Sci.
, vol.32
, pp. 4331-4336
-
-
Quinn, J.B.1
Quinn, G.D.2
-
9
-
-
0033321984
-
Examination of the indentation size effect in low-load vickers hardness testing of ceramics
-
J. Gong, J. Wu, and Z. Guan, "Examination of the Indentation Size Effect in Low-Load Vickers Hardness Testing of Ceramics," J. Eur. Ceram. Soc., 19, 2625-31 (1999).
-
(1999)
J. Eur. Ceram. Soc.
, vol.19
, pp. 2625-2631
-
-
Gong, J.1
Wu, J.2
Guan, Z.3
-
10
-
-
0033077781
-
Structure and mechanical properties of bulk nanocrystalline materials
-
J. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. V. Swygenhoven, "Structure and Mechanical Properties of Bulk Nanocrystalline Materials," MRS Bull., 24, 44-50 (1999).
-
(1999)
MRS Bull.
, vol.24
, pp. 44-50
-
-
Weertman, J.R.1
Farkas, D.2
Hemker, K.3
Kung, H.4
Mayo, M.5
Mitra, R.6
Swygenhoven, H.V.7
-
11
-
-
0035869093
-
Processing and properties of nanophase non-oxide ceramics
-
R. Vaßen ind D. Stöver, "Processing and Properties of Nanophase Non-oxide Ceramics," Mater. Sci. Eng., A301, 59-68 (2001).
-
(2001)
Mater. Sci. Eng., A
, vol.301
, pp. 59-68
-
-
Vaßen Ind, R.1
Stöver, D.2
-
12
-
-
0035978562
-
Mechanical properties of nanostructured materials
-
K. A. Padmanabhan, "Mechanical Properties of Nanostructured Materials,'' Mater. Sci. Eng., A304-306, 200-205 (2001).
-
(2001)
Mater. Sci. Eng., A
, vol.304-306
, pp. 200-205
-
-
Padmanabhan, K.A.1
-
13
-
-
0032178595
-
On the anomalous hardness of nanocrystalline materials
-
D. A. Konstantinidis and E. C. Aifantis, "On the Anomalous Hardness of Nanocrystalline Materials," Nanostruct. Mater., 10 [7] 1111-18 (1998).
-
(1998)
Nanostruct. Mater.
, vol.10
, Issue.7
, pp. 1111-1118
-
-
Konstantinidis, D.A.1
Aifantis, E.C.2
-
14
-
-
0032677062
-
A coherent polycrystal model for the inverse hall-petch relation in nanocrystalline materials
-
H. W. Song, S. R. Guo, and Z. Q. Hu, "A Coherent Polycrystal Model for the Inverse Hall-Petch Relation in Nanocrystalline Materials," Nanostruct. Mater., 11 [2] 203-10 (1999).
-
(1999)
Nanostruct. Mater.
, vol.11
, Issue.2
, pp. 203-210
-
-
Song, H.W.1
Guo, S.R.2
Hu, Z.Q.3
-
15
-
-
10844292304
-
SiC nano-materials produced through liquid phase sintering: Processing and properties
-
submitted to
-
D. Sciti, I. Vicens, H. Herlin, I. Grabis, and A. Bellosi, "SiC Nano-Materials Produced Through Liquid Phase Sintering: Processing and Properties," submitted to J. Ceram. Proc. Res.
-
J. Ceram. Proc. Res.
-
-
Sciti, D.1
Vicens, I.2
Herlin, H.3
Grabis, I.4
Bellosi, A.5
-
16
-
-
0034248379
-
Effect of additives on densification, microstructure and properties of liquid-phase-sintered silicon carbide
-
D. Sciti and A. Bellosi, "Effect of Additives on Densification, Microstructure and Properties of Liquid-Phase-Sintered Silicon Carbide," J. Mater. Sci., 35, 1-7 (2000).
-
(2000)
J. Mater. Sci.
, vol.35
, pp. 1-7
-
-
Sciti, D.1
Bellosi, A.2
-
17
-
-
0006178145
-
Mapping of mechanical properties of WC-Co using nanoindentation
-
H. Engqvist and U. Wiklund, "Mapping of Mechanical Properties of WC-Co Using Nanoindentation," Tribol. Lett., 8, 147-52 (2000).
-
(2000)
Tribol. Lett.
, vol.8
, pp. 147-152
-
-
Engqvist, H.1
Wiklund, U.2
-
18
-
-
0035877116
-
Nanoindentations hardness of submicrometer alumina ceramics
-
A. Krell and S. Schädlich, "Nanoindentations Hardness of Submicrometer Alumina Ceramics," Mater. Sci. Eng., A307, 172-81 (2001).
-
(2001)
Mater. Sci. Eng., A
, vol.307
, pp. 172-181
-
-
Krell, A.1
Schädlich, S.2
-
19
-
-
0026875935
-
An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
-
W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., 7 [6] 1564-83 (1992).
-
(1992)
J. Mater. Res.
, vol.7
, Issue.6
, pp. 1564-1583
-
-
Oliver, W.C.1
Pharr, G.M.2
-
20
-
-
0035521982
-
Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments
-
T. Sawa and K. Tanaka, "Simplified Method for Analyzing Nanoindentation Data and Evaluating Performance of Nanoindentation Instruments," J. Mater. Res., 16 [11] 3084-96 (2001).
-
(2001)
J. Mater. Res.
, vol.16
, Issue.11
, pp. 3084-3096
-
-
Sawa, T.1
Tanaka, K.2
-
21
-
-
0032045816
-
Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques
-
A. Bolshakov and G. M. Pharr, "Influences of Pileup on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques," J. Mater. Res., 13 [4] 1049-58 (1998).
-
(1998)
J. Mater. Res.
, vol.13
, Issue.4
, pp. 1049-1058
-
-
Bolshakov, A.1
Pharr, G.M.2
-
22
-
-
0035822447
-
Do residual nanoindentations in metals and ceramics relax with time?
-
Y.Y. Lim and M. M. Chaudhri, "Do Residual Nanoindentations in Metals and Ceramics Relax with Time?" J. Phys. D: Appl. Phys., 34, L70-L78 (2001).
-
(2001)
J. Phys. D: Appl. Phys.
, vol.34
-
-
Lim, Y.Y.1
Chaudhri, M.M.2
-
24
-
-
0003687677
-
-
Wiley, New York
-
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; p. 165. Wiley, New York, 1978.
-
(1978)
Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building
, pp. 165
-
-
Box, G.E.P.1
Hunter, W.G.2
Hunter, J.S.3
-
25
-
-
0039289336
-
Errors associated with depth-sensing microindentation tests
-
J. Mencík and M. V. Swain, "Errors Associated with Depth-Sensing Microindentation Tests," J. Mater. Res., 10 [6] 1491-501 (1995).
-
(1995)
J. Mater. Res.
, vol.10
, Issue.6
, pp. 1491-1501
-
-
Mencík, J.1
Swain, M.V.2
-
26
-
-
10844272959
-
Use of the indentation size effect on microhardness for materials characterization
-
P. M. Sargent, "Use of the Indentation Size Effect on Microhardness for Materials Characterization," ASTM Spec. Tech. Publ., 889, 16-74 (1986).
-
(1986)
ASTM Spec. Tech. Publ.
, vol.889
, pp. 16-74
-
-
Sargent, P.M.1
-
27
-
-
0025417279
-
A friction effect in low-load hardness testing of copper and aluminum
-
H. Shi and M. Atkinson, "A Friction Effect in Low-Load Hardness Testing of Copper and Aluminum," J. Mater. Sci., 25, 2111-14 (1990).
-
(1990)
J. Mater. Sci.
, vol.25
, pp. 2111-2114
-
-
Shi, H.1
Atkinson, M.2
-
28
-
-
0027593170
-
The frictional component of die indentation size effect in low load microhardness testing
-
H. Li, A. Gosh, Y. H. Han, and R. C. Bradt, "The Frictional Component of die Indentation Size Effect in Low Load Microhardness Testing," J. Mater. Res., 8 [5] 1028-32 (1993).
-
(1993)
J. Mater. Res.
, vol.8
, Issue.5
, pp. 1028-1032
-
-
Li, H.1
Gosh, A.2
Han, Y.H.3
Bradt, R.C.4
-
29
-
-
0030189364
-
Indentation size effect: Reality or artefact?
-
A. lost and R. Bigot, "Indentation Size Effect: Reality or Artefact?," J. Mater. Sci., 31, 3573-77 (1996).
-
(1996)
J. Mater. Sci.
, vol.31
, pp. 3573-3577
-
-
Lost, A.1
Bigot, R.2
-
30
-
-
0029289877
-
Size dependent hardness of silver single crystals
-
Q. Ma and D. R. Clarke, "Size Dependent Hardness of Silver Single Crystals," J. Mater. Res., 10 [4] 853-63 (1995).
-
(1995)
J. Mater. Res.
, vol.10
, Issue.4
, pp. 853-863
-
-
Ma, Q.1
Clarke, D.R.2
-
31
-
-
0012713620
-
Indentation size effects for ceramics: Is there a fracture mechanics explanation?
-
Edited by R. C. Bradt et al. Plenum Press, New York
-
M. V. Swain and M. Wittling, "Indentation Size Effects for Ceramics: Is There a Fracture Mechanics Explanation?"; pp. 379-87 in Fracture Mechanics of Ceramics, Vol. 11. Edited by R. C. Bradt et al. Plenum Press, New York, 1996.
-
(1996)
Fracture Mechanics of Ceramics
, vol.11
, pp. 379-387
-
-
Swain, M.V.1
Wittling, M.2
-
32
-
-
0035802970
-
Length scale and time scale effects on the plastic flow of FCC metals
-
M. F. Horstmeyer, M. I. Baskes, and S. J. Plimpton, "Length Scale and Time Scale Effects on the Plastic Flow of FCC Metals," Acta Mater., 49, 4363-74 (2001).
-
(2001)
Acta Mater.
, vol.49
, pp. 4363-4374
-
-
Horstmeyer, M.F.1
Baskes, M.I.2
Plimpton, S.J.3
-
33
-
-
0027841038
-
A phenomenological theory for strain gradient effects in plasticity
-
N. A. Fleck and J. W. Hutchinson, "A Phenomenological Theory for Strain Gradient Effects in Plasticity," J. Mech. Phys. Solids, 41 [12] 1825-57 (1993).
-
(1993)
J. Mech. Phys. Solids
, vol.41
, Issue.12
, pp. 1825-1857
-
-
Fleck, N.A.1
Hutchinson, J.W.2
-
34
-
-
0037211162
-
Geometrically necessary dislocations and size-dependent plasticity
-
H. Gao and Y. Huang, "Geometrically Necessary Dislocations and Size-Dependent Plasticity," Scr. Mater., 48, 113-18 (2003).
-
(2003)
Scr. Mater.
, vol.48
, pp. 113-118
-
-
Gao, H.1
Huang, Y.2
-
35
-
-
0032020971
-
Indentation size effects in crystalline materials: A law for strain gradient plasticity
-
W. D. Nix and H. Gao, "Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity," J. Mech. Phys. Solids, 46 [3] 411-25 (1998).
-
(1998)
J. Mech. Phys. Solids
, vol.46
, Issue.3
, pp. 411-425
-
-
Nix, W.D.1
Gao, H.2
-
36
-
-
0002870839
-
Physical chemistry of intrinsic hardness
-
J. J. Gilman, "Physical Chemistry of Intrinsic Hardness," Mater. Sci. Eng., A209, 74-81 (1996).
-
(1996)
Mater. Sci. Eng., A
, vol.209
, pp. 74-81
-
-
Gilman, J.J.1
-
37
-
-
0035252466
-
Depth dependence of hardness in copper single crystals measured by nanoindentation
-
Y. Liu and A. H. W. Ngan, "Depth Dependence of Hardness in Copper Single Crystals Measured by Nanoindentation," Scr. Mater., 44, 237-41 (2001).
-
(2001)
Scr. Mater.
, vol.44
, pp. 237-241
-
-
Liu, Y.1
Ngan, A.H.W.2
-
38
-
-
0036533507
-
The correlation of the indentation size effect measured with indenters of various shapes
-
J. G. Swadener, E. P. George, and G. M. Pharr, "The Correlation of the Indentation Size Effect Measured with Indenters of Various Shapes," J. Mech. Phys. Solids, 50 [4] 681-94 (2002).
-
(2002)
J. Mech. Phys. Solids
, vol.50
, Issue.4
, pp. 681-694
-
-
Swadener, J.G.1
George, E.P.2
Pharr, G.M.3
-
39
-
-
0034291404
-
Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys
-
A. A. Elmustafa, J. A. Eastman, M. N. Rittner, J. R. Weertman, and D. S. Stone, "Indentation Size Effect: Large Grained Aluminum versus Nanocrystalline Aluminum-Zirconium Alloys," Scr. Mater., 43 [10] 951-55 (2000).
-
(2000)
Scr. Mater.
, vol.43
, Issue.10
, pp. 951-955
-
-
Elmustafa, A.A.1
Eastman, J.A.2
Rittner, M.N.3
Weertman, J.R.4
Stone, D.S.5
-
40
-
-
0347210611
-
Plastic deformation of nanocrystralline materials
-
H. Hahn, P. Mondal, and K. A. Padmanabhan, "Plastic Deformation of Nanocrystralline Materials," Nanostruct. Mater., 9, 603-606 (1997).
-
(1997)
Nanostruct. Mater.
, vol.9
, pp. 603-606
-
-
Hahn, H.1
Mondal, P.2
Padmanabhan, K.A.3
-
41
-
-
0037192520
-
Deformation of nanostructures
-
I. A. Ovid'ko, "Deformation of Nanostructures," Science, 295, 2386 (2002).
-
(2002)
Science
, vol.295
, pp. 2386
-
-
Ovid'ko, I.A.1
-
42
-
-
0037192483
-
Atomic-level observation of disclination dipoles in mechanically milled nanocrystalline fe
-
M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, "Atomic-Level Observation of Disclination Dipoles in Mechanically Milled Nanocrystalline Fe," Science, 295, 2433-35 (2002).
-
(2002)
Science
, vol.295
, pp. 2433-2435
-
-
Murayama, M.1
Howe, J.M.2
Hidaka, H.3
Takaki, S.4
-
43
-
-
0001760125
-
Elastic properties of grain boundaries in copper and their relationship to bulk elastic constants
-
J. B. Adams, W. G. Wolfer, and S. M. Foiles, "Elastic Properties of Grain Boundaries in Copper and Their Relationship to Bulk Elastic Constants," Phys. Rev. B, 40 [14] 9479-84 (1989).
-
(1989)
Phys. Rev. B
, vol.40
, Issue.14
, pp. 9479-9484
-
-
Adams, J.B.1
Wolfer, W.G.2
Foiles, S.M.3
-
44
-
-
0029403341
-
On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanial milling/ alloying
-
T. D. Shen, C. C. Koch, T. Y. Tsui, and G. M. Pharr, "On the elastic Moduli of Nanocrystalline Fe, Cu, Ni, and Cu-Ni Alloys Prepared by Mechanial Milling/ Alloying," J. Mater. Res., 10 [11] 2892-96 (1995).
-
(1995)
J. Mater. Res.
, vol.10
, Issue.11
, pp. 2892-2896
-
-
Shen, T.D.1
Koch, C.C.2
Tsui, T.Y.3
Pharr, G.M.4
|