-
1
-
-
0242490547
-
-
Arnoux, P.; Sabaty, M.; Frangioni, B.; Guigliarelli, B.; Alric, J.; Adriano, J.-M.; Pignol, D. Nat. Struct. Biol. 2003, 10, 928-934.
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 928-934
-
-
Arnoux, P.1
Sabaty, M.2
Frangioni, B.3
Guigliarelli, B.4
Alric, J.5
Adriano, J.-M.6
Pignol, D.7
-
3
-
-
18744432274
-
-
Léger, C.; Elliott, S. J.; Hoke, K. R.; Jeuken, L. J. C.; Jones, A. K.; Armstrong, F. A. Biochemistry 2003, 42, 8653-8662.
-
(2003)
Biochemistry
, vol.42
, pp. 8653-8662
-
-
Léger, C.1
Elliott, S.J.2
Hoke, K.R.3
Jeuken, L.J.C.4
Jones, A.K.5
Armstrong, F.A.6
-
4
-
-
0035852958
-
-
(a) Heffron, K.; Léger, C.; Rothery, R. A.; Weiner, J. H.; Armstrong, F. A. Biochemistry 2001, 40, 3117-3126.
-
(2001)
Biochemistry
, vol.40
, pp. 3117-3126
-
-
Heffron, K.1
Léger, C.2
Rothery, R.A.3
Weiner, J.H.4
Armstrong, F.A.5
-
5
-
-
0035949638
-
-
(b) Anderson, L. J.; Richardson, D. J.; Butt, J. N. Biochemistry 2001, 40, 11294-11307.
-
(2001)
Biochemistry
, vol.40
, pp. 11294-11307
-
-
Anderson, L.J.1
Richardson, D.J.2
Butt, J.N.3
-
6
-
-
18644364006
-
-
(c) Elliott, S. J.; Léger, C.; Pershad, H. R.; Hirst, J.; Heffron, K.; Ginet, N.; Blasco, F.; Rothery, R. A.; Weiner, J. H.; Armstrong, F. A. Biochim. Biophys. Acta 2002, 1555, 54-59.
-
(2002)
Biochim. Biophys. Acta
, vol.1555
, pp. 54-59
-
-
Elliott, S.J.1
Léger, C.2
Pershad, H.R.3
Hirst, J.4
Heffron, K.5
Ginet, N.6
Blasco, F.7
Rothery, R.A.8
Weiner, J.H.9
Armstrong, F.A.10
-
7
-
-
0037094049
-
-
(d) Butt, J. N.; Anderson, L. J.; Rubio, L. M.; Richardson, D. J.; Flores, E.; Herrero, A. Bioelectrochemistry 2002, 56, 17-18.
-
(2002)
Bioelectrochemistry
, vol.56
, pp. 17-18
-
-
Butt, J.N.1
Anderson, L.J.2
Rubio, L.M.3
Richardson, D.J.4
Flores, E.5
Herrero, A.6
-
8
-
-
0035909102
-
-
(a) Léger, C.; Heffron, K.; Pershad, H. R.; Maklashina, E.; Luna-Chavez, C.; Cecchini, G.; Ackrell, B. A. C.; Armstrong, F. A. Biochemistry 2001, 40, 11234-11245.
-
(2001)
Biochemistry
, vol.40
, pp. 11234-11245
-
-
Léger, C.1
Heffron, K.2
Pershad, H.R.3
Maklashina, E.4
Luna-Chavez, C.5
Cecchini, G.6
Ackrell, B.A.C.7
Armstrong, F.A.8
-
9
-
-
0037207118
-
-
(b) Léger, C.; Jones, A. K.; Roseboom, W.; Albracht, S. P. J.; Armstrong, F. A. Biochemistry 2002, 41, 15736-15746.
-
(2002)
Biochemistry
, vol.41
, pp. 15736-15746
-
-
Léger, C.1
Jones, A.K.2
Roseboom, W.3
Albracht, S.P.J.4
Armstrong, F.A.5
-
10
-
-
1042282277
-
-
note
-
2) with 1 μL of 90 μM NapAB solution. Experiments were performed under a nitrogen atmosphere, with buffers consisting of either 5 mM in each of CHES, HEPES, MES, TAPS, NaAc and 0.1 M NaCl (Figure 1), or 50 mM TRIS and 0.1 M NaCl (Figure 2).
-
-
-
-
11
-
-
1042270783
-
-
note
-
Notations: F, Faraday constant; R, gas constant; T, temperature; S, substrate concentration; A, electrode surface; Γ. electroactive coverage. The other symbols are defined in the text.
-
-
-
-
12
-
-
0037137649
-
-
Léger, C.; Jones, A. K.; Albracht, S. P. J.; Armstrong, F. A. J. Phys. Chem. B 2002, 106, 13058-13063.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 13058-13063
-
-
Léger, C.1
Jones, A.K.2
Albracht, S.P.J.3
Armstrong, F.A.4
-
13
-
-
0035095129
-
-
V ion naturally explains that no extrema in the activity should appear. Sulfite oxidases, which are not members of the DMSO reductase family, do not show complex electrochemical modulation of catalytic activity (Elliott, S. J.; McElhaney, A. E.; Feng, C.; Enemark, J. H.; Armstrong, F. A. J. Am. Chem. Soc. 2002, 124, 11612-11613. Aguey-Zinsou, K.-F.; Bernhardt, P. V.; Kappler, U.; McEwan, A. G. J. Am. Chem. Soc. 2003, 125, 530-535).
-
(2001)
Structure
, vol.9
, pp. 125-132
-
-
Ellis, P.J.1
Conrads, T.2
Hille, R.3
Kuhn, P.4
-
14
-
-
1042282278
-
-
private communication
-
V ion naturally explains that no extrema in the activity should appear. Sulfite oxidases, which are not members of the DMSO reductase family, do not show complex electrochemical modulation of catalytic activity (Elliott, S. J.; McElhaney, A. E.; Feng, C.; Enemark, J. H.; Armstrong, F. A. J. Am. Chem. Soc. 2002, 124, 11612-11613. Aguey-Zinsou, K.-F.; Bernhardt, P. V.; Kappler, U.; McEwan, A. G. J. Am. Chem. Soc. 2003, 125, 530-535).
-
-
-
Hoke, K.R.1
Cobb, N.2
Hille, R.3
Armstrong, F.A.4
-
15
-
-
0037010013
-
-
V ion naturally explains that no extrema in the activity should appear. Sulfite oxidases, which are not members of the DMSO reductase family, do not show complex electrochemical modulation of catalytic activity (Elliott, S. J.; McElhaney, A. E.; Feng, C.; Enemark, J. H.; Armstrong, F. A. J. Am. Chem. Soc. 2002, 124, 11612-11613. Aguey-Zinsou, K.-F.; Bernhardt, P. V.; Kappler, U.; McEwan, A. G. J. Am. Chem. Soc. 2003, 125, 530-535).
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11612-11613
-
-
Elliott, S.J.1
McElhaney, A.E.2
Feng, C.3
Enemark, J.H.4
Armstrong, F.A.5
-
16
-
-
0037438521
-
-
V ion naturally explains that no extrema in the activity should appear. Sulfite oxidases, which are not members of the DMSO reductase family, do not show complex electrochemical modulation of catalytic activity (Elliott, S. J.; McElhaney, A. E.; Feng, C.; Enemark, J. H.; Armstrong, F. A. J. Am. Chem. Soc. 2002, 124, 11612-11613. Aguey-Zinsou, K.-F.; Bernhardt, P. V.; Kappler, U.; McEwan, A. G. J. Am. Chem. Soc. 2003, 125, 530-535).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 530-535
-
-
Aguey-Zinsou, K.-F.1
Bernhardt, P.V.2
Kappler, U.3
McEwan, A.G.4
-
17
-
-
1042270780
-
-
note
-
E. coli nitrate reductase exhibits extremely complex waveshapes (Figure 2 in ref 4c), which cannot be explained by the simple considerations presented here.
-
-
-
-
18
-
-
0035819941
-
-
In model compounds relevant to the DMSO reductase family, reduction of oxide proceeds according to second order, irreversible kinetics, and the large, negative entropy of activation indicates an associative transition state involving considerable Mo-O(substrate) bond making (Lim, B. S.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1920-1930), in accordance with density functional calculations (Webster, C. E.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 5820-5821). In Rb, capsulatus DMSO reductase, formation of the enzyme-substrate complex (as opposed to the subsequent, first-order catalytic step) is rate determining at low pH (Adams, B.; Smith, A. T.; Bailey, S.; McEwan, A. G.; Bray, R. C. Biochemistry 1999, 38, 8501-8511).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 1920-1930
-
-
Lim, B.S.1
Holm, R.H.2
-
19
-
-
0034805672
-
-
In model compounds relevant to the DMSO reductase family, reduction of oxide proceeds according to second order, irreversible kinetics, and the large, negative entropy of activation indicates an associative transition state involving considerable Mo-O(substrate) bond making (Lim, B. S.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1920-1930), in accordance with density functional calculations (Webster, C. E.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 5820-5821). In Rb, capsulatus DMSO reductase, formation of the enzyme-substrate complex (as opposed to the subsequent, first-order catalytic step) is rate determining at low pH (Adams, B.; Smith, A. T.; Bailey, S.; McEwan, A. G.; Bray, R. C. Biochemistry 1999, 38, 8501-8511).
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 5820-5821
-
-
Webster, C.E.1
Hall, M.B.2
-
20
-
-
0033614820
-
-
In model compounds relevant to the DMSO reductase family, reduction of oxide proceeds according to second order, irreversible kinetics, and the large, negative entropy of activation indicates an associative transition state involving considerable Mo-O(substrate) bond making (Lim, B. S.; Holm, R. H. J. Am. Chem. Soc. 2001, 123, 1920-1930), in accordance with density functional calculations (Webster, C. E.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 5820-5821). In Rb, capsulatus DMSO reductase, formation of the enzyme-substrate complex (as opposed to the subsequent, first-order catalytic step) is rate determining at low pH (Adams, B.; Smith, A. T.; Bailey, S.; McEwan, A. G.; Bray, R. C. Biochemistry 1999, 38, 8501-8511).
-
(1999)
Biochemistry
, vol.38
, pp. 8501-8511
-
-
Adams, B.1
Smith, A.T.2
Bailey, S.3
McEwan, A.G.4
Bray, R.C.5
-
21
-
-
0033523919
-
-
Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Nature 1999, 402, 47-52.
-
(1999)
Nature
, vol.402
, pp. 47-52
-
-
Page, C.C.1
Moser, C.C.2
Chen, X.3
Dutton, P.L.4
-
22
-
-
0041318860
-
-
The recently determined crystal structure of E. coli nitrate reductase revealed that a proximal [4Fe-4S] in NarG has previously escaped characterization (Bertero, M. G.; Rothery, A. R.; Palak, M.; Hou, C.; Lim, C.; Lim, D.; Blasco, F.; Weiner, J. H.; Strynadka, N. C. J. Nat. Struct. Biol. 2003, 10, 681-687). In E. coli DMSO reductase, an equivalent, yet unidentified, cluster may be present in DmsA (Rothery, R. A., private communication).
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 681-687
-
-
Bertero, M.G.1
Rothery, A.R.2
Palak, M.3
Hou, C.4
Lim, C.5
Lim, D.6
Blasco, F.7
Weiner, J.H.8
Strynadka, N.C.J.9
-
23
-
-
0041318860
-
-
private communication
-
The recently determined crystal structure of E. coli nitrate reductase revealed that a proximal [4Fe-4S] in NarG has previously escaped characterization (Bertero, M. G.; Rothery, A. R.; Palak, M.; Hou, C.; Lim, C.; Lim, D.; Blasco, F.; Weiner, J. H.; Strynadka, N. C. J. Nat. Struct. Biol. 2003, 10, 681-687). In E. coli DMSO reductase, an equivalent, yet unidentified, cluster may be present in DmsA (Rothery, R. A., private communication).
-
-
-
Rothery, R.A.1
|