메뉴 건너뛰기




Volumn 35, Issue 3, 2003, Pages 225-256

Finding a region with the minimum total L1 distance from prescribed terminals

Author keywords

Facility location; L1 distance; Optimal region; Rectilinear shortest path

Indexed keywords

COMPUTATIONAL COMPLEXITY; GRAPH THEORY; PROBLEM SOLVING; SET THEORY; THEOREM PROVING; TREES (MATHEMATICS);

EID: 0942268472     PISSN: 01784617     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00453-002-0997-y     Document Type: Article
Times cited : (1)

References (18)
  • 2
    • 0003651533 scopus 로고
    • Parallel rectilinear shortest paths with rectangular obstacles
    • M. J. Atallah and D. Chen, Parallel rectilinear shortest paths with rectangular obstacles, Comput. Geom. Theory Appl., 1 (1991), 79-113.
    • (1991) Comput. Geom. Theory Appl. , vol.1 , pp. 79-113
    • Atallah, M.J.1    Chen, D.2
  • 4
    • 0002792353 scopus 로고
    • Rectilinear shortest paths with rectangular barriers
    • P. J. de Rezende, D. T. Lee, and Y. F. Wu, Rectilinear shortest paths with rectangular barriers, Discrete Comput. Geom., 4 (1989), 41-53.
    • (1989) Discrete Comput. Geom. , vol.4 , pp. 41-53
    • De Rezende, P.J.1    Lee, D.T.2    Wu, Y.F.3
  • 5
    • 0001954038 scopus 로고
    • Distance functions and their application to robot path planning in the presence of obstacles
    • E. G. Gilbert and D. W. Johnson, Distance functions and their application to robot path planning in the presence of obstacles, IEEE Trans. Robotics Automation, RA-1(1) (1985), 21-30.
    • (1985) IEEE Trans. Robotics Automation , vol.RA-1 , Issue.1 , pp. 21-30
    • Gilbert, E.G.1    Johnson, D.W.2
  • 6
    • 0003658330 scopus 로고    scopus 로고
    • Proximity problems for points on a rectilinear plane with rectangular obstacles
    • S. Guha and I. Suzuki, Proximity problems for points on a rectilinear plane with rectangular obstacles, Algorithmica, 17 (1997), 281-307.
    • (1997) Algorithmica , vol.17 , pp. 281-307
    • Guha, S.1    Suzuki, I.2
  • 8
    • 0027806870 scopus 로고
    • A linear processor polylog-time algorithm for shortest paths in planar graphs
    • P. N. Klein, A linear processor polylog-time algorithm for shortest paths in planar graphs, Proc. 34th Symp. on Foundations of Computer Science, pp. 259-270, 1993.
    • (1993) Proc. 34th Symp. on Foundations of Computer Science , pp. 259-270
    • Klein, P.N.1
  • 11
    • 0033409992 scopus 로고    scopus 로고
    • A shortest pair of paths on the plane with obstacles and crossing areas
    • Y. Kusakari, H. Suzuki, and T. Nishizeki, A shortest pair of paths on the plane with obstacles and crossing areas, Internat. J. Comput. Geom. Appl., 9(2), (1999), 151-170.
    • (1999) Internat. J. Comput. Geom. Appl. , vol.9 , Issue.2 , pp. 151-170
    • Kusakari, Y.1    Suzuki, H.2    Nishizeki, T.3
  • 12
    • 0019609522 scopus 로고
    • Finding minimum rectilinear distance paths in the presence of barriers
    • R. C. Larson and V. O. Li, Finding minimum rectilinear distance paths in the presence of barriers, Networks, 11 (1981), 285-304.
    • (1981) Networks , vol.11 , pp. 285-304
    • Larson, R.C.1    Li, V.O.2
  • 16
    • 0026679512 scopus 로고
    • 1 shortest paths among polygonal obstacles in the plane
    • 1 shortest paths among polygonal obstacles in the plane, Algorithmica, 8 (1992), 55-88.
    • (1992) Algorithmica , vol.8 , pp. 55-88
    • Mitchell, J.S.B.1
  • 17
    • 0041085137 scopus 로고
    • T. Ohtsuki (editor); North-Holland, Amsterdam
    • T. Ohtsuki (editor) Layout Design and Verification North-Holland, Amsterdam, 1986.
    • (1986) Layout Design and Verification


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.