-
2
-
-
0032069691
-
-
J.D. Close, F. Federmann, K. Hoffmann, and N. Quaas, J. Low Temp. Phys. 111, 661 (1998).
-
(1998)
J. Low Temp. Phys.
, vol.111
, pp. 661
-
-
Close, J.D.1
Federmann, F.2
Hoffmann, K.3
Quaas, N.4
-
4
-
-
0034224389
-
-
F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1028
-
-
Dalfovo, F.1
Mayol, R.2
Pi, M.3
Barranco, M.4
-
5
-
-
85039000874
-
-
Ph.D. thesis, University of Illinois at Urbana-Champaign
-
E. Draeger, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2001, http://archive.ncsa.uiuc.edu/Science/CMP/draeger/draeger_thesis.ps.gz
-
(2001)
-
-
Draeger, E.1
-
6
-
-
3943058551
-
-
M. Hartmann, R.E. Miller, J.P. Toennies, and A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1566
-
-
Hartmann, M.1
Miller, R.E.2
Toennies, J.P.3
Vilesov, A.4
-
7
-
-
0035830247
-
-
C. Callegari, K.K. Lehmann, R. Schmied, and G. Scoles, J. Chem. Phys. 115, 10090 (2001).
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 10090
-
-
Callegari, C.1
Lehmann, K.K.2
Schmied, R.3
Scoles, G.4
-
8
-
-
0034462471
-
-
M. Pi, R. Mayol, M. Barranco, and F. Dalfovo, J. Low Temp. Phys. 121, 423 (2000).
-
(2000)
J. Low Temp. Phys.
, vol.121
, pp. 423
-
-
Pi, M.1
Mayol, R.2
Barranco, M.3
Dalfovo, F.4
-
9
-
-
42749098543
-
-
R. Mayol, M. Pi, M. Barranco, and F. Dalfovo, Phys. Rev. Lett. 87, 145301 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 145301
-
-
Mayol, R.1
Pi, M.2
Barranco, M.3
Dalfovo, F.4
-
10
-
-
0036101777
-
-
M. Barranco, R. Mayol, M. Pi, and F. Dalfovo, J. Low Temp. Phys. 126, 281 (2002).
-
(2002)
J. Low Temp. Phys.
, vol.126
, pp. 281
-
-
Barranco, M.1
Mayol, R.2
Pi, M.3
Dalfovo, F.4
-
16
-
-
0000007849
-
-
S.A. Vitiello, L. Reatto, G.V. Chester, and M.H. Kalos, Phys. Rev. B 54, 1205 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 1205
-
-
Vitiello, S.A.1
Reatto, L.2
Chester, G.V.3
Kalos, M.H.4
-
22
-
-
0542427036
-
-
G. Deville, P. Roche, N.J. Appleyard, and F.I.B. Williams, Czech. J. Phys. 46, 89 (1996).
-
(1996)
Czech. J. Phys.
, vol.46
, pp. 89
-
-
Deville, G.1
Roche, P.2
Appleyard, N.J.3
Williams, F.I.B.4
-
23
-
-
85038994618
-
-
In what follows, we use ripplon energies calculated for a spherical incompressible droplet, (Formula presented) (Ref. 24). A model-independent dispersion relation (Ref. 25) predicts an energy for the L = 2 ripplon that is at least 40% larger than the value we have used
-
In what follows, we use ripplon energies calculated for a spherical incompressible droplet, (Formula presented) (Ref. 24). A model-independent dispersion relation (Ref. 25) predicts an energy for the L = 2 ripplon that is at least 40% larger than the value we have used.
-
-
-
-
24
-
-
0004168443
-
-
6th ed. (Dover, New York
-
H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1945).
-
(1945)
Hydrodynamics
-
-
Lamb, H.1
-
27
-
-
0021443067
-
-
C.M. Muirhead, W.F. Vinen, and R.J. Donnelly, Philos. Trans. R. Soc. London, Ser. A 311, 433 (1984).
-
(1984)
Philos. Trans. R. Soc. London, Ser. A
, vol.311
, pp. 433
-
-
Muirhead, C.M.1
Vinen, W.F.2
Donnelly, R.J.3
-
29
-
-
0004161642
-
-
Wiley, New York, Eq. (3.125)
-
R. N. Zare, Angular Momentum (Wiley, New York, 1988), Eq. (3.125).
-
(1988)
Angular Momentum
-
-
Zare, R.N.1
-
31
-
-
0034276259
-
-
A. Conjusteau, C. Callegari, I. Reinhard, K.K. Lehmann, and G. Scoles, J. Chem. Phys. 113, 4840 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 4840
-
-
Conjusteau, A.1
Callegari, C.2
Reinhard, I.3
Lehmann, K.K.4
Scoles, G.5
-
32
-
-
0000453183
-
-
I. Reinhard, C. Callegari, A. Conjusteau, K.K. Lehmann, and G. Scoles, Phys. Rev. Lett. 82, 5036 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 5036
-
-
Reinhard, I.1
Callegari, C.2
Conjusteau, A.3
Lehmann, K.K.4
Scoles, G.5
-
33
-
-
0034272157
-
-
C. Callegari, I. Reinhard, K.K. Lehmann, G. Scoles, K. Nauta, and R.E. Miller, J. Chem. Phys. 113, 4636 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 4636
-
-
Callegari, C.1
Reinhard, I.2
Lehmann, K.K.3
Scoles, G.4
Nauta, K.5
Miller, R.E.6
-
34
-
-
0034508072
-
-
C. Callegari, A. Conjusteau, I. Reinhard, K.K. Lehmann, and G. Scoles, J. Chem. Phys. 113, 10535 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 10535
-
-
Callegari, C.1
Conjusteau, A.2
Reinhard, I.3
Lehmann, K.K.4
Scoles, G.5
-
35
-
-
85039026475
-
-
There have been weak Q branches observed in the spectra of polymers of these species, but these have recently been assigned to thermal excitations. (Ref. 36)
-
There have been weak Q branches observed in the spectra of polymers of these species, but these have recently been assigned to thermal excitations. (Ref. 36).
-
-
-
-
36
-
-
85039004947
-
-
T.A. Miller (Ohio State University, Columbus
-
E. W. Draeger, K. K. Lehmann, and R. E. Miller, in Proceedings of the 58th International Symposium on Molecular Spectroscopy, Columbus, Ohio, edited by T.A. Miller (Ohio State University, Columbus, 2003).
-
(2003)
Proceedings of the 58th International Symposium on Molecular Spectroscopy, Columbus, Ohio
-
-
Draeger, E.W.1
Lehmann, K.K.2
Miller, R.E.3
-
38
-
-
26444436538
-
-
H. Buchenau, E.L. Knuth, J. Northby, J.P. Toennies, and C. Winkler, J. Chem. Phys. 92, 6875 (1990).
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 6875
-
-
Buchenau, H.1
Knuth, E.L.2
Northby, J.3
Toennies, J.P.4
Winkler, C.5
-
40
-
-
0033116423
-
-
M.E. Dodd, P.C. Hendry, N.S. Lawson, P.V.E. McClintock, and C.D.H. Williams, J. Low Temp. Phys. 115, 89 (1999).
-
(1999)
J. Low Temp. Phys.
, vol.115
, pp. 89
-
-
Dodd, M.E.1
Hendry, P.C.2
Lawson, N.S.3
McClintock, P.V.E.4
Williams, C.D.H.5
-
41
-
-
36549101612
-
-
T.E. Gough, M. Mengel, P.A. Rowntree, and G. Scoles, J. Chem. Phys. 83, 4958 (1985).
-
(1985)
J. Chem. Phys.
, vol.83
, pp. 4958
-
-
Gough, T.E.1
Mengel, M.2
Rowntree, P.A.3
Scoles, G.4
-
46
-
-
85038993820
-
-
By differentiation of the sum of bulk and surface energies with respect to He particle number, one finds that (Formula presented). This is similar to numerical diffusion Monte Carlo results (Ref. 25)
-
By differentiation of the sum of bulk and surface energies with respect to He particle number, one finds that (Formula presented). This is similar to numerical diffusion Monte Carlo results (Ref. 25).
-
-
-
-
47
-
-
85039033408
-
-
This angular momentum is given by (Formula presented)
-
This angular momentum is given by (Formula presented).
-
-
-
-
48
-
-
85039012496
-
-
This maximum angular momentum is the maximum of (Formula presented) with respect to n, the number of evaporated helium atoms
-
This maximum angular momentum is the maximum of (Formula presented) with respect to n, the number of evaporated helium atoms.
-
-
-
-
49
-
-
85038979728
-
-
This angular momentum is the maximum with respect to the number of atoms in one fragment, n, of (Formula presented), where μ(n) = mn(N − n)/N is the reduced mass of the departing fragments and (Formula presented) is the increase in surface area
-
This angular momentum is the maximum with respect to the number of atoms in one fragment, n, of (Formula presented), where μ(n) = mn(N − n)/N is the reduced mass of the departing fragments and (Formula presented) is the increase in surface area.
-
-
-
-
52
-
-
85039001128
-
-
In the hollow-core model, the vorticity κ can be taken as homogeneously distributed over the entire core volume or concentrated in a singular filament at the center. As described in Ref. 19, the difference lies only in a reinterpretation of the core radius
-
In the hollow-core model, the vorticity κ can be taken as homogeneously distributed over the entire core volume or concentrated in a singular filament at the center. As described in Ref. 19, the difference lies only in a reinterpretation of the core radius.
-
-
-
-
53
-
-
85038975393
-
-
k(x) is entered as LambertW(k,x); in MATHEMATICA, ProductLog[k,x]. An efficient numerical routine for the evaluation of the Lambert function is given in Ref. 54
-
k(x) is entered as LambertW(k,x); in MATHEMATICA, ProductLog[k,x]. An efficient numerical routine for the evaluation of the Lambert function is given in Ref. 54.
-
-
-
|