메뉴 건너뛰기




Volumn 28, Issue 2, 1996, Pages 481-499

Large deviations in the piecewise linear approximation of gaussian processes with stationary increments

Author keywords

Interpolation of realization; Maximum of non stationary Gaussian processes; Point process

Indexed keywords


EID: 0010826439     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1017/S0001867800048588     Document Type: Article
Times cited : (22)

References (26)
  • 1
    • 0003297436 scopus 로고
    • An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes
    • IMS, Hayward, CA
    • ADLER, R. J. (1990) An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. (IMS Lecture Notes-Monograph Series 12). IMS, Hayward, CA.
    • (1990) IMS Lecture Notes-Monograph Series , vol.12
    • Adler, R.J.1
  • 2
    • 0346796118 scopus 로고
    • Asymptotic properties of deviations of a sample path of a Gaussian process from approximation by broken line for decreasing width of quantization
    • ed. Yu. K. Belyaev. Moscow University Press, Moscow
    • BELYAEV, YU. K. AND SIMONYAN, A. H. (1979) Asymptotic properties of deviations of a sample path of a Gaussian process from approximation by broken line for decreasing width of quantization. In Random Processes and Fields. ed. Yu. K. Belyaev. pp 9-21. Moscow University Press, Moscow.
    • (1979) Random Processes and Fields , pp. 9-21
    • Belyaev, Yu.K.1    Simonyan, A.H.2
  • 3
    • 0040884032 scopus 로고
    • The maximum of a Gaussian process with nonconstant variance
    • BERMAN, S. M. (1985) The maximum of a Gaussian process with nonconstant variance. Ann Inst H. Poincaré Probab. Statist. 21, 383-391.
    • (1985) Ann Inst H. Poincaré Probab. Statist. , vol.21 , pp. 383-391
    • Berman, S.M.1
  • 4
    • 0009277981 scopus 로고
    • The maximum of a Gaussian process with nonconstant variance: A sharp bound for the distribution tail
    • BERMAN, S. M. AND KONO, N. (1989) The maximum of a Gaussian process with nonconstant variance: a sharp bound for the distribution tail. Ann. Prob. 17, 632-650.
    • (1989) Ann. Prob. , vol.17 , pp. 632-650
    • Berman, S.M.1    Kono, N.2
  • 5
    • 0001639899 scopus 로고
    • The Brunn-Minkowski inequality in Gauss space
    • BORELL, C. (1975) The Brunn-Minkowski inequality in Gauss space. Inventiones Math. 30, 207-215.
    • (1975) Inventiones Math. , vol.30 , pp. 207-215
    • Borell, C.1
  • 7
    • 0040829200 scopus 로고
    • The distribution of large values of the supremum of a Gaussian process
    • DOBRIC, V., MARCUS, M. B. AND WEBER, M. J. G. (1988) The distribution of large values of the supremum of a Gaussian process. Astérique 157-158, 95-127.
    • (1988) Astérique , vol.157-158 , pp. 95-127
    • Dobric, V.1    Marcus, M.B.2    Weber, M.J.G.3
  • 8
    • 0002485879 scopus 로고
    • Sample functions of the Gaussian process
    • DUDLEY, R. M. (1973) Sample functions of the Gaussian process. Ann. Prob. 1, 66-103.
    • (1973) Ann. Prob. , vol.1 , pp. 66-103
    • Dudley, R.M.1
  • 9
    • 0346165549 scopus 로고
    • Approximation theory for simulation of continuous Gaussian processes
    • EPLETT, W. T. (1986) Approximation theory for simulation of continuous Gaussian processes. Prob. Theory Rel. Fields 73, 159-181.
    • (1986) Prob. Theory Rel. Fields , vol.73 , pp. 159-181
    • Eplett, W.T.1
  • 10
    • 0001783943 scopus 로고
    • Regularité des trajectoires des fonctions alétoires gaussienns
    • Springer, Berlin
    • FERNIQUE, X. (1975) Regularité des trajectoires des fonctions alétoires gaussienns. (Lecture Notes in Mathematics 480) pp. 1-96. Springer, Berlin.
    • (1975) Lecture Notes in Mathematics , vol.480 , pp. 1-96
    • Fernique, X.1
  • 11
    • 0023145476 scopus 로고
    • Distribution of the maximum of a Gaussian process by a Monte-Carlo method
    • HASOFER, A. M. (1987) Distribution of the maximum of a Gaussian process by a Monte-Carlo method. J. Sound Vibr. 112, 283-293.
    • (1987) J. Sound Vibr. , vol.112 , pp. 283-293
    • Hasofer, A.M.1
  • 13
    • 21144472140 scopus 로고
    • Extreme values of the cyclostationary Gaussian random processes
    • KONSTANT, D. G. AND PITERBARG, V. I. (1993) Extreme values of the cyclostationary Gaussian random processes. J. Appl. Prob. 30, 82-97.
    • (1993) J. Appl. Prob. , vol.30 , pp. 82-97
    • Konstant, D.G.1    Piterbarg, V.I.2
  • 15
    • 0002289349 scopus 로고
    • Upcrossings probabilities for stationary Gaussian processes
    • PICKANDS, J. III (1969) Upcrossings probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 51-73.
    • (1969) Trans. Amer. Math. Soc. , vol.145 , pp. 51-73
    • Pickands III, J.1
  • 17
    • 0242620774 scopus 로고
    • Asymptotics of the probability of large excursions for a nonstationary Gaussian process
    • PITERBARG, V. I. AND PRISYAZHNYUK, V. P. (1979) Asymptotics of the probability of large excursions for a nonstationary Gaussian process. Theor. Prob. Math. Statist. 18, 131-143.
    • (1979) Theor. Prob. Math. Statist. , vol.18 , pp. 131-143
    • Piterbarg, V.I.1    Prisyazhnyuk, V.P.2
  • 18
    • 0346199667 scopus 로고
    • A statistically important Gaussian process
    • PFLUG, G. (1982) A statistically important Gaussian process. Stock. Proc. Appl. 13, 45-57.
    • (1982) Stock. Proc. Appl. , vol.13 , pp. 45-57
    • Pflug, G.1
  • 20
    • 3142557381 scopus 로고
    • On the probability of a large excursion of a nonstationary Gaussian process
    • RUDZKIS, R. O. (1985) On the probability of a large excursion of a nonstationary Gaussian process. Lithuanian Math. J. 25, 143-154.
    • (1985) Lithuanian Math. J. , vol.25 , pp. 143-154
    • Rudzkis, R.O.1
  • 21
    • 0346796114 scopus 로고
    • The best approximation of random processes and approximation of periodic random processes
    • SELEZNJEV, O. V. (1989a) The best approximation of random processes and approximation of periodic random processes. Univ. Lund Statist. Res. Rep. 6, 1-32.
    • (1989) Univ. Lund Statist. Res. Rep. , vol.6 , pp. 1-32
    • Seleznjev, O.V.1
  • 22
    • 3142624176 scopus 로고
    • Estimate of tail probability for maximum of Gaussian field
    • SELEZNJEV, O. V. (1989b) Estimate of tail probability for maximum of Gaussian field. Univ. Lund Statist. Res. Rep. 10, 1-10.
    • (1989) Univ. Lund Statist. Res. Rep. , vol.10 , pp. 1-10
    • Seleznjev, O.V.1
  • 23
    • 0346165546 scopus 로고
    • Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes
    • SELEZNJEV, O. V. (1991) Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes. J. Appl. Prob. 28, 17-32.
    • (1991) J. Appl. Prob. , vol.28 , pp. 17-32
    • Seleznjev, O.V.1
  • 24
    • 38249002021 scopus 로고
    • Sampling designs for estimation of a random process
    • SU, Y. AND CAMBANIS, S. (1993) Sampling designs for estimation of a random process. Stoch. Proc. Appl. 46, 47-89.
    • (1993) Stoch. Proc. Appl. , vol.46 , pp. 47-89
    • Su, Y.1    Cambanis, S.2
  • 25
    • 0039999914 scopus 로고
    • Small tails for the supremum of a Gaussian process
    • TALAGRAND, M. (1988) Small tails for the supremum of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 24, 307-315.
    • (1988) Ann. Inst. H. Poincaré Probab. Statist. , vol.24 , pp. 307-315
    • Talagrand, M.1
  • 26
    • 0040176579 scopus 로고
    • A note on the absence of tangencies in Gaussian sample paths
    • YLVISAKER, N. D. (1968) A note on the absence of tangencies in Gaussian sample paths. Ann. Math. Statist. 39, 261-262.
    • (1968) Ann. Math. Statist. , vol.39 , pp. 261-262
    • Ylvisaker, N.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.