메뉴 건너뛰기




Volumn 18, Issue 6, 2003, Pages 788-795

Kernel-based nonlinear discriminant analysis for face recognition

Author keywords

Face recognition; Kernel based nonlinear discriminant analysis; Kernel based principal component analysis; Linear subspace analysis

Indexed keywords

COMPUTATIONAL COMPLEXITY; EIGENVALUES AND EIGENFUNCTIONS; FEATURE EXTRACTION; MATRIX ALGEBRA; POLYNOMIALS; PRINCIPAL COMPONENT ANALYSIS; VECTORS;

EID: 0346965357     PISSN: 10009000     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02945468     Document Type: Letter
Times cited : (19)

References (28)
  • 1
    • 0003454768 scopus 로고    scopus 로고
    • Face recognition: A literature survey
    • CS-Tech Report-4167, University of Maryland
    • Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face Recognition: A Literature Survey. CS-Tech Report-4167, University of Maryland, 2000.
    • (2000)
    • Zhao, W.1    Chellappa, R.2    Rosenfeld, A.3    Phillips, P.J.4
  • 3
    • 0033096854 scopus 로고    scopus 로고
    • Face recognition using the nearest feature line method
    • Li S Z, Lu J W. Face recognition using the nearest feature line method. IEEE Trans. Neural Networks, 1999, 10: 439-443.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 439-443
    • Li, S.Z.1    Lu, J.W.2
  • 7
    • 0004709472 scopus 로고    scopus 로고
    • Subspace linear discriminant analysis for face recognition
    • Tech Report CAR-TR-914, Center for Automation Research, University of Maryland
    • Zhao W, Chellappa R, Phillips P J. Subspace Linear Discriminant Analysis for Face Recognition. Tech Report CAR-TR-914, Center for Automation Research, University of Maryland, 1999.
    • (1999)
    • Zhao, W.1    Chellappa, R.2    Phillips, P.J.3
  • 8
    • 0034300875 scopus 로고    scopus 로고
    • A new lDA-based face recognition system which can solve the small sample size problem
    • Chen L F, Liao H M, Lin J C et al. A new lDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 33(10).
    • (2000) Pattern Recognition , vol.33 , Issue.10
    • Chen, L.F.1    Liao, H.M.2    Lin, J.C.3
  • 9
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data - with application to face recognition
    • Yu H, Yang J. A direct LDA algorithm for high-dimensional data - With application to face recognition. Pattern Recognition, 2001, 34(10): 2067-2070.
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 13
    • 0346580957 scopus 로고    scopus 로고
    • Principal manifolds and Bayesian subspaces for visual recognition
    • Tech Report 99-35, Mitsubishi Electric Research Laboratory
    • Moghaddam B. Principal manifolds and Bayesian subspaces for visual recognition. Tech Report 99-35, Mitsubishi Electric Research Laboratory, 1999.
    • (1999)
    • Moghaddam, B.1
  • 14
    • 67649165602 scopus 로고    scopus 로고
    • PCA vs. ICA: A comparison on the FERET data set
    • Back K, Draper B A, Beveridge J R et al. PCA vs. ICA: A comparison on the FERET data set. http://www.cs.colostate.edu/evalfacerec/papers/cvprip02.pdf.
    • Back, K.1    Draper, B.A.2    Beveridge, J.R.3
  • 15
    • 0003425662 scopus 로고    scopus 로고
    • Support vector machines: Training and applications
    • Tech Report, AI Lab, MIT
    • Osuna E, Freund R, Girosi F. Support vector machines: Training and applications. Tech Report, AI Lab, MIT, 1997.
    • (1997)
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 17
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 19
    • 0036477056 scopus 로고    scopus 로고
    • Face recognition using kernel principal component analysis
    • Kin, K I, Jung K, Kim H J. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 2002, 9(2): 40-42.
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.2 , pp. 40-42
    • Kin, K.I.1    Jung, K.2    Kim, H.J.3
  • 21
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10): 2385-2404.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 26
    • 0032045780 scopus 로고    scopus 로고
    • The FERET database and evaluation procedure for face recognition algorithms
    • Phillips P J, Wechsler H, Huang J, Rauss P. The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing, 1998, 16(5): 295-306.
    • (1998) Image and Vision Computing , vol.16 , Issue.5 , pp. 295-306
    • Phillips, P.J.1    Wechsler, H.2    Huang, J.3    Rauss, P.4
  • 28
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and application to boosting
    • Freund Y, Schapire R E. A decision-theoretic generalization of online learning and application to boosting. Journal of. Comp. & Sys. Sci, 1997, 55(1): 119-139.
    • (1997) Journal of. Comp. & Sys. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.