-
2
-
-
0013006379
-
Bayesian inference for the power law process
-
639.
-
Bar-lev, S.K. et al., 1992. Bayesian inference for the power law process. Ann. Inst. Math. Statist. 44, 623- 639.
-
(1992)
Ann. Inst. Math. Statist.
, vol.44
-
-
Bar-Lev, S.K.1
-
3
-
-
0002501585
-
Ordered group reference priors with applications to a multinomial problem
-
Berger J.O., Bernardo J.M. Ordered group reference priors with applications to a multinomial problem. Biometrika. 79:1992;25-37.
-
(1992)
Biometrika
, vol.79
, pp. 25-37
-
-
Berger, J.O.1
Bernardo, J.M.2
-
4
-
-
0000298252
-
The intrinsic Bayes factor for model selection and prediction
-
Berger J.O., Pericchi L.R. The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91:1996;109-122.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 109-122
-
-
Berger, J.O.1
Pericchi, L.R.2
-
5
-
-
0000602516
-
On the justification of default and intrinsic Bayes factors
-
In: Lee, J.C. et al. (Eds.), Springer, New York - 293.
-
Berger, J.O., Perricchi, L.R., 1997. On the justification of default and intrinsic Bayes factors. In: Lee, J.C. et al. (Eds.), Modelling and Prediction. Springer, New York, pp. 276 - 293.
-
(1997)
Modelling and Prediction
, pp. 276
-
-
Berger, J.O.1
Perricchi, L.R.2
-
7
-
-
21344468866
-
Some remarks on noninformative priors
-
Datta G., Ghosh M. Some remarks on noninformative priors. J. Amer. Statist. Assoc. 90:1995;1357-1363.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 1357-1363
-
-
Datta, G.1
Ghosh, M.2
-
9
-
-
0030327756
-
Selection of prior distributions by formal rules
-
Kass R., Wasserman L. Selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91:1996;1343-1370.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 1343-1370
-
-
Kass, R.1
Wasserman, L.2
-
10
-
-
0347836646
-
Testing hypotheses about the power law process under failure truncation using intrinsic Bayes factors
-
to appear.
-
Lingham, R.T., Sivaganesan, S., 1996. Testing hypotheses about the power law process under failure truncation using intrinsic Bayes factors. Ann. Inst. Statist. Math., to appear.
-
(1996)
Ann. Inst. Statist. Math.
-
-
Lingham, R.T.1
Sivaganesan, S.2
-
11
-
-
0000800881
-
Frequentist validity of posterior quantiles in the presence of a nuisance parameter
-
Mukerjee R., Dey D.K. Frequentist validity of posterior quantiles in the presence of a nuisance parameter. Biometrika. 80:1993;499-505.
-
(1993)
Biometrika
, vol.80
, pp. 499-505
-
-
Mukerjee, R.1
Dey, D.K.2
-
12
-
-
0000391017
-
The power law process: A model for the reliability of repairable systems
-
260
-
Rigdon S.E., Basu A.P. The power law process: a model for the reliability of repairable systems. J. Quality Tech. 21:1989;251-260.
-
(1989)
J. Quality Tech.
, vol.21
-
-
Rigdon, S.E.1
Basu, A.P.2
-
13
-
-
0010940524
-
On the robustness of the intrinsic Bayes factors for nested models
-
(with discussion). Bayesian Robustness, - 173.
-
Sanso, B., Pericchi, L., Moreno, E., 1996. On the robustness of the intrinsic Bayes factors for nested models (with discussion). Bayesian Robustness, IMS Lecture Notes - Monograph Series, vol. 29, pp. 155 - 173.
-
(1996)
IMS Lecture Notes - Monograph Series
, vol.29
, pp. 155
-
-
Sanso, B.1
Pericchi, L.2
Moreno, E.3
-
15
-
-
0001159310
-
On formulae for confidence points based on integrals of weighted likelihoods
-
-329.
-
Welch, B.N., Peers, B., 1963. On formulae for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. 318 -329.
-
(1963)
J. Roy. Statist. Soc.
, pp. 318
-
-
Welch, B.N.1
Peers, B.2
|