-
7
-
-
0026334190
-
-
(a) Chini, M.; Crotti, P.; Favero, L.; Pineschi, M. Tetrahedron Lett. 1991, 32, 7583.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 7583
-
-
Chini, M.1
Crotti, P.2
Favero, L.3
Pineschi, M.4
-
8
-
-
0028027516
-
-
(b) Crotti, P.; Di Bussolo, V.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Lett. 1994, 35, 6537.
-
(1994)
Tetrahedron Lett.
, vol.35
, pp. 6537
-
-
Crotti, P.1
Di Bussolo, V.2
Favero, L.3
Macchia, F.4
Pineschi, M.5
-
9
-
-
0001435803
-
-
(c) Crotti, P.; Di Bussolo, V.; Favero, L.; Pasero, M.; Pineschi, M. J. Org. Chem. 1996, 61, 9548.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 9548
-
-
Crotti, P.1
Di Bussolo, V.2
Favero, L.3
Pasero, M.4
Pineschi, M.5
-
10
-
-
0034712223
-
-
and references therein
-
Taylor S. K. Tetrahedron 2000, 56, 1149 and references therein.
-
(2000)
Tetrahedron
, vol.56
, pp. 1149
-
-
Taylor, S.K.1
-
11
-
-
0344791553
-
-
and references therein
-
Ziegler T. Chem. Rev. 1991, 91, 651 and references therein.
-
(1991)
Chem. Rev.
, vol.91
, pp. 651
-
-
Ziegler, T.1
-
13
-
-
33645949559
-
-
(b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 3654
-
-
Francl, M.M.1
Pietro, W.J.2
Hehre, W.J.3
Binkley, J.S.4
Gordon, M.S.5
DeFrees, D.J.6
Pople, J.A.7
-
14
-
-
84986468715
-
-
(c) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294.
-
(1983)
Comput. Chem.
, vol.4
, pp. 294
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, P.V.R.J.4
-
15
-
-
26844534384
-
-
(d) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 650
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
16
-
-
0000712790
-
-
(d) Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1992, 197, 499.
-
(1992)
J. Chem. Phys. Lett.
, vol.197
, pp. 499
-
-
Gill, P.M.W.1
Johnson, B.G.2
Pople, J.A.3
Frisch, M.4
-
21
-
-
84962359221
-
-
(b) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
-
(1996)
Chem. Phys. Lett.
, vol.255
, pp. 327
-
-
Cossi, M.1
Barone, V.2
Cammi, R.3
Tomasi, J.4
-
22
-
-
0031209054
-
-
(a) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
-
(1997)
J. Chem. Phys.
, vol.107
, pp. 3032
-
-
Cances, E.1
Mennucci, B.2
Tomasi, J.3
-
23
-
-
0032502372
-
-
(b) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253.
-
(1998)
Chem. Phys. Lett.
, vol.286
, pp. 253
-
-
Cossi, M.1
Barone, V.2
Mennucci, B.3
Tomasi, J.4
-
24
-
-
84962408725
-
-
(c) Mennucci, B.; Cammi, R.; Tomasi, J. J. Chem. Phys. 1998, 109, 2798.
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 2798
-
-
Mennucci, B.1
Cammi, R.2
Tomasi, J.3
-
25
-
-
0005974181
-
-
The interaction between a transition metal center and a C-H bond is commonly referred to as "agostic interaction": (a) Brookhart, M.; Green, M. L. J. Organomet. Chem. 1983, 250, 395.
-
(1983)
J. Organomet. Chem.
, vol.250
, pp. 395
-
-
Brookhart, M.1
Green, M.L.2
-
27
-
-
84985720146
-
-
The "agostic interaction" was observed with lithium cation as well: (c) Uhl, W.; Laya, M.; Massa, W. Chem. Ber. 1991, 124, 1511.
-
(1991)
Chem. Ber.
, vol.124
, pp. 1511
-
-
Uhl, W.1
Laya, M.2
Massa, W.3
-
28
-
-
33748213531
-
-
(d) Hiller, W.; Laya, M.; Uhl, W. Angew. Chem., Int. Ed. Engl. 1991, 30, 324.
-
(1991)
Angew. Chem., Int. Ed. Engl.
, vol.30
, pp. 324
-
-
Hiller, W.1
Laya, M.2
Uhl, W.3
-
29
-
-
0037471663
-
-
The interaction between a transition metal and the C-C bond of cyclopropane has previously been observed: Hinrichs, R. Z.; Schroden, J. J.; Floyd Davis, H. J. Am. Chem. Soc. 2003, 125, 860.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 860
-
-
Hinrichs, R.Z.1
Schroden, J.J.2
Floyd Davis, H.3
-
30
-
-
0345999084
-
-
note
-
-1 respectively (entries 8, 9, and 7, Table 3, Supporting Information). A similar consideration can be made for the transition states TS3Go and TS3Ao (entries 13-24, Table 3, Supporting Information).
-
-
-
-
31
-
-
0345999082
-
-
note
-
-1. A frequency calculation of this point, in vacuo and in the presence of the solvent, showed an imaginary frequency and therefore its nature of "false minimum". After this value, the gradient rapidly increases and the structure collapses to the 7a complex.
-
-
-
-
32
-
-
0347260181
-
-
note
-
-1), with the result that the rate-limiting step of the addition reaction would be the breaking of the 7a complex.
-
-
-
-
33
-
-
0347260182
-
-
note
-
-1, respectively (entries 25-27 and 29, Table 3, Supporting Information).
-
-
-
-
34
-
-
0346630126
-
-
note
-
# (solvent) are reported in italics and the real value in brackets.
-
-
-
|