-
1
-
-
0033233256
-
-
Yang, X.; Liu, W.-H.; Jin, W.-J.; Shen, G.-L.; Yu, R.-Q. Spectrochim. Acta A 1999, 55, 2719.
-
(1999)
Spectrochim. Acta A
, vol.55
, pp. 2719
-
-
Yang, X.1
Liu, W.-H.2
Jin, W.-J.3
Shen, G.-L.4
Yu, R.-Q.5
-
2
-
-
0039895694
-
-
Grabchev, I.; Moneva, I.; Wolarz, E.; Bauman, D.; Stouyanov, S. Z. Naturforsch. 2001, 56a, 291.
-
(2001)
Z. Naturforsch.
, vol.56 a
, pp. 291
-
-
Grabchev, I.1
Moneva, I.2
Wolarz, E.3
Bauman, D.4
Stouyanov, S.5
-
3
-
-
0038137533
-
-
Grabchev, I.; Moneva, I.; Wolarz, E.; Bauman, D. Dyes Pigm. 2003, 58, 1.
-
(2003)
Dyes Pigm.
, vol.58
, pp. 1
-
-
Grabchev, I.1
Moneva, I.2
Wolarz, E.3
Bauman, D.4
-
5
-
-
0011777284
-
-
(b) Ramsteiner, I. B.; Hartshuch, A.; Port, H. Chem. Phys. Lett. 2001, 343, 83.
-
(2001)
Chem. Phys. Lett.
, vol.343
, pp. 83
-
-
Ramsteiner, I.B.1
Hartshuch, A.2
Port, H.3
-
6
-
-
0037996675
-
-
(c) Schweitzer, G.; Grondheid, R.; Jordens, S.; Lor, M.; De Belder, G.; Weil, T.; Reuther, E.; Müllen, K.; De Schryver, F. C. J. Phys. Chem. A 2003, 107, 3199.
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 3199
-
-
Schweitzer, G.1
Grondheid, R.2
Jordens, S.3
Lor, M.4
De Belder, G.5
Weil, T.6
Reuther, E.7
Müllen, K.8
De Schryver, F.C.9
-
7
-
-
0001038750
-
-
Nishimura, Y.; Yasuda, A.; Speiser, S.; Yamazaki, I. Chem. Phys. Lett. 2000, 323, 117 and references therein.
-
(2000)
Chem. Phys. Lett.
, vol.323
, pp. 117
-
-
Nishimura, Y.1
Yasuda, A.2
Speiser, S.3
Yamazaki, I.4
-
8
-
-
0036342934
-
-
Fidler, V.; Kapusta, K.; Nepraš, M.; Schroeder, J.; Rubtsov, I. V.; Yoshihara, K. Z. Phys. Chem. 2002, 216, 589.
-
(2002)
Z. Phys. Chem.
, vol.216
, pp. 589
-
-
Fidler, V.1
Kapusta, K.2
Nepraš, M.3
Schroeder, J.4
Rubtsov, I.V.5
Yoshihara, K.6
-
9
-
-
0031237126
-
-
Nepraš, M.; Machalický, O.; Šeps, M.; Hrdina, R.; Kapusta, P.; Fidler, V. Dyes Pigm. 1997, 35, 31.
-
(1997)
Dyes Pigm.
, vol.35
, pp. 31
-
-
Nepraš, M.1
Machalický, O.2
Šeps, M.3
Hrdina, R.4
Kapusta, P.5
Fidler, V.6
-
10
-
-
0008678436
-
-
National Bureau of Standards, Special Publication No. 466; Washington, DC
-
Birks, J. B. Fluorescence quantum yield measurements; National Bureau of Standards, Special Publication No. 466; Washington, DC, 1977.
-
(1977)
Fluorescence Quantum Yield Measurements
-
-
Birks, J.B.1
-
18
-
-
33646102263
-
-
note
-
This analysis excludes toluene and chlorobenzene, as the quadrupole moments in these solvents contribute significantly to solvation. This effect is not reproduced by the continuum model. For dipole solvation in nondipolar solvents analysis, see: (a) Reynolds, L.; Gardecki, J. A.; Frankland, S. J. V.; Horng, M. L.; Maroncelli, M. J. Phys. Chem. 1996, 100, 10337.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 10337
-
-
Reynolds, L.1
Gardecki, J.A.2
Frankland, S.J.V.3
Horng, M.L.4
Maroncelli, M.5
-
20
-
-
0345189222
-
-
note
-
The Supporting Information (Figure S1) includes plots of the experimental and best fit (McRae-Bayliss model) absorption and emission maximum data for ABa, BaM, ABaAC, and ABaTC12 versus the static dielectric constant reaction field. The use of the latter parameter for the x-axis is arbitrary.
-
-
-
-
21
-
-
0344326780
-
-
note
-
The solvent dependence of the emission spectral maxima is larger than the solvent dependence of the absorption spectral maxima. Using the latter to determine the cavity radius provides a more stringent test of the constancy of the dipole moment in the vertical and relaxed excited-state geometries.
-
-
-
-
22
-
-
0344326779
-
-
note
-
In principle, the vacuum Stokes shift reflects differences in the equilibrium geometries (bond lengths, angles, torsional angles, and vibrational frequencies) of the ground and excited states (i.e., the internal reorganization energy). The numerical difference is approximately twice the internal reorganization energy.
-
-
-
-
23
-
-
0345189221
-
-
note
-
(a) It is common to use 40% of a planar chromophore's long axis length as its cavity radius. This yields 4.9 Å for ABaAc, 4.5 Å for BaM, and 4.0 Å for ABa.
-
-
-
-
26
-
-
0344758822
-
-
note
-
In a few cases, better fits are obtained by adding <2% of a fast decaying component.
-
-
-
-
27
-
-
0345189219
-
-
note
-
The solvent dependence of the nonradiative rate constants for ABa is different. The rate constant is smallest in dibutyl ether and largest in methanol.
-
-
-
-
28
-
-
0345189220
-
-
note
-
00), similar correlations to those in Figure 4 are produced using a variety of definitions of the emitting state energy.
-
-
-
-
29
-
-
0000978249
-
-
(a) Hamanoue, K.; Nakayama, T.; Ikenaga, K.; Ibuki, K. J. Photochem. Photobiol. A 1993, 74, 147.
-
(1993)
J. Photochem. Photobiol. A
, vol.74
, pp. 147
-
-
Hamanoue, K.1
Nakayama, T.2
Ikenaga, K.3
Ibuki, K.4
-
30
-
-
0042968096
-
-
(b) Bruni, M. C.; Ponterini, G.; Scoponi, M. J. Phys. Chem. 1989, 93, 678.
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 678
-
-
Bruni, M.C.1
Ponterini, G.2
Scoponi, M.3
-
32
-
-
0017623397
-
-
note
-
0. Morgan, D. D.; Warshawsky, D.; Atkinson, T. Photochem. Photobiol. 1977, 25, 31.
-
(1977)
Photochem. Photobiol.
, vol.25
, pp. 31
-
-
Morgan, D.D.1
Warshawsky, D.2
Atkinson, T.3
-
37
-
-
21344442215
-
-
(a) van der Burgt, M. J.; Jansen, L. M. G.; Huizer, A. H.; Varma, C. A. G. O. Chem. Phys. 1995, 201, 525.
-
(1995)
Chem. Phys.
, vol.201
, pp. 525
-
-
Van Der Burgt, M.J.1
Jansen, L.M.G.2
Huizer, A.H.3
Varma, C.A.G.O.4
|