메뉴 건너뛰기




Volumn 38, Issue , 2004, Pages

Data Mining in Health and Medical Information

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0345359920     PISSN: 00664200     EISSN: None     Source Type: Book Series    
DOI: 10.1002/aris.1440380108     Document Type: Review
Times cited : (21)

References (118)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • Abbass, H. A. (2002). An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25(3), 265-281.
    • (2002) Artificial Intelligence in Medicine , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 3
  • 5
    • 84970866422 scopus 로고
    • Statistics notes: Diagnostic tests 1: Sensitivity and specificity
    • Altman, D. G., & Bland, M. (1994a). Statistics notes: Diagnostic tests 1: Sensitivity and specificity. British Medical Journal, 308, 1552.
    • (1994) British Medical Journal , vol.308 , pp. 1552
    • Altman, D.G.1    Bland, M.2
  • 6
    • 84970846412 scopus 로고
    • Statistics notes: Diagnostic tests 2: Predictive values
    • Altman, D. G., & Bland, M. (1994b). Statistics notes: Diagnostic tests 2: Predictive values. British Medical Journal, 309, 102.
    • (1994) British Medical Journal , vol.309 , pp. 102
    • Altman, D.G.1    Bland, M.2
  • 7
    • 0028339835 scopus 로고
    • Statistics notes: Diagnostic tests 3: Receiver operating characteristic plots
    • Altman, D. G., & Bland, M. (1994c). Statistics notes: Diagnostic tests 3: Receiver operating characteristic plots. British Medical Journal, 309, 188.
    • (1994) British Medical Journal , vol.309 , pp. 188
    • Altman, D.G.1    Bland, M.2
  • 9
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R., Diederich, J., & Tickle, A. B. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6), 373-389.
    • (1995) Knowledge-based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 10
    • 0034049118 scopus 로고    scopus 로고
    • A new approach to risk determination: Prediction of new falls among community-dwelling older people using a genetic algorithm neural network (GANN)
    • Bath, P. A., Morgan, K., Pendleton, N., Clague, J., Horan, M., & Lucas, S. (2000). A new approach to risk determination: Prediction of new falls among community-dwelling older people using a genetic algorithm neural network (GANN). Journal of Gerontology (medical science). 55A, M17-21.
    • (2000) Journal of Gerontology (Medical Science) , vol.55 A
    • Bath, P.A.1    Morgan, K.2    Pendleton, N.3    Clague, J.4    Horan, M.5    Lucas, S.6
  • 11
    • 0012687474 scopus 로고    scopus 로고
    • A hierarchical classification of dependency amongst older people using artificial neural networks
    • Bath, P., & Philp, I., (1998). A hierarchical classification of dependency amongst older people using artificial neural networks. Health Care in Later Life, 3(1), 59-69.
    • (1998) Health Care in Later Life , vol.3 , Issue.1 , pp. 59-69
    • Bath, P.1    Philp, I.2
  • 12
    • 0030775848 scopus 로고    scopus 로고
    • On the use of neural network techniques to analyze sleep ECG data
    • Baumgart-Schmitt, R., Herrmann, W. M., & Eilers, R. (1998). On the use of neural network techniques to analyze sleep ECG data. Neuropsychobiology, 37, 49-58.
    • (1998) Neuropsychobiology , vol.37 , pp. 49-58
    • Baumgart-Schmitt, R.1    Herrmann, W.M.2    Eilers, R.3
  • 13
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt, W. G. (1991). Use of an artificial neural network for the diagnosis of myocardial infarction. Annals of Internal Medicine, 115, 843-848.
    • (1991) Annals of Internal Medicine , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 14
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. Lancet, 346, 1135-1138.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 15
    • 0344892147 scopus 로고    scopus 로고
    • Prospective validation of artificial neural networks trained to identify acute myocardial infarction
    • Baxt, W. G., & Skora, J. (1996). Prospective validation of artificial neural networks trained to identify acute myocardial infarction. Lancet, 280(3), 229-231.
    • (1996) Lancet , vol.280 , Issue.3 , pp. 229-231
    • Baxt, W.G.1    Skora, J.2
  • 17
    • 0033608392 scopus 로고    scopus 로고
    • Multiple test procedures other than Bonferroni's deserve wider use
    • Bender, R., & Lange, S. (1999). Multiple test procedures other than Bonferroni's deserve wider use. British Medical Journal, 318, 600a-600.
    • (1999) British Medical Journal , vol.318
    • Bender, R.1    Lange, S.2
  • 20
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli, E., Boracchi, P., Mariani, L., & Marubini, E. (1998). Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Statistics in Medicine, 17, 1169-1186.
    • (1998) Statistics in Medicine , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 21
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • Biganzoli, E., Boracchi, P., & Marubini, E. (2002). A general framework for neural network models on censored survival data, Neural Networks, 15(2), 209-218.
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 23
    • 0028931857 scopus 로고
    • Multiple significance tests: The Bonferroni method
    • Bland,M.J., & Altman,D.G. (1995). Multiple significance tests: The Bonferroni method. British Medical Journal, 310, 170.
    • (1995) British Medical Journal , vol.310 , pp. 170
    • Bland, M.J.1    Altman, D.G.2
  • 27
    • 84937440265 scopus 로고    scopus 로고
    • Medical analysis and diagnosis by neural networks
    • Brause,R.W. (2001). Medical analysis and diagnosis by neural networks. Lecture Notes in Computer Science 2199, 1-13.
    • (2001) Lecture Notes in Computer Science , vol.2199 , pp. 1-13
    • Brause, R.W.1
  • 29
    • 0026318551 scopus 로고
    • 27-Year mortality in the western collaborative group study: Construction of risk groups by recursive partitioning
    • Carmelli,D., Halpern,J., Swan,G.E., Dame,A., McElroy,M., Gelb,A.B., & Rosenman,R.H. (1991). 27-year mortality in the western collaborative group study: Construction of risk groups by recursive partitioning. Journal of Clinical Epidemiology, 44(12), 1341-1351.
    • (1991) Journal of Clinical Epidemiology , vol.44 , Issue.12 , pp. 1341-1351
    • Carmelli, D.1    Halpern, J.2    Swan, G.E.3    Dame, A.4    McElroy, M.5    Gelb, A.B.6    Rosenman, R.H.7
  • 33
    • 0028885032 scopus 로고
    • Introduction to neural networks
    • Cross,S.S., Harrison,R.F., & Kennedy,R.L. (1995). Introduction to neural networks. Lancet, 346, 1075-1079.
    • (1995) Lancet , vol.346 , pp. 1075-1079
    • Cross, S.S.1    Harrison, R.F.2    Kennedy, R.L.3
  • 36
    • 0030219072 scopus 로고    scopus 로고
    • Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks
    • Downs, J., Harrison R. F., Kennedy, R. L., & Cross, S. S. (1996). Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks. Artificial Intelligence in Medicine, 8(4), 403-428.
    • (1996) Artificial Intelligence in Medicine , vol.8 , Issue.4 , pp. 403-428
    • Downs, J.1    Harrison, R.F.2    Kennedy, R.L.3    Cross, S.S.4
  • 38
    • 0035212929 scopus 로고    scopus 로고
    • Prediction in medicine by integrating regression trees into regression analysis with optimal scaling
    • Dusseldorp, E., & Meulman, J. J. (2001). Prediction in medicine by integrating regression trees into regression analysis with optimal scaling. Methods of Information in Medicine, 40, 403-409.
    • (2001) Methods of Information in Medicine , vol.40 , pp. 403-409
    • Dusseldorp, E.1    Meulman, J.J.2
  • 39
    • 0028812688 scopus 로고
    • Artificial neural networks in pathology and medical laboratories
    • Dybowski, R., & Gant, V. (1995). Artificial neural networks in pathology and medical laboratories. Lancet, 346, 1203-1207.
    • (1995) Lancet , vol.346 , pp. 1203-1207
    • Dybowski, R.1    Gant, V.2
  • 41
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi, D., & Simon, R. (1995). A neural network model for survival data. Statistics in Medicine, 14, 73-82.
    • (1995) Statistics in Medicine , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 42
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.
    • (1996) Communications of the ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 43
    • 0028005364 scopus 로고
    • Prediction of breast cancer malignancy using an artificial neural network
    • Floyd, C. E., Lo, J. Y., Yun, A. J., Sullivan, D. C., & Kornguth, P. J. (1994). Prediction of breast cancer malignancy using an artificial neural network. Cancer, 74(11), 2944-2948.
    • (1994) Cancer , vol.74 , Issue.11 , pp. 2944-2948
    • Floyd, C.E.1    Lo, J.Y.2    Yun, A.J.3    Sullivan, D.C.4    Kornguth, P.J.5
  • 44
    • 0029100867 scopus 로고
    • Evolving neural networks for detecting breast cancer
    • Fogel, D. B., Wasson, E. C., & Boughton, E. M. (1995). Evolving neural networks for detecting breast cancer. Cancer Letters, 96(1), 49-53.
    • (1995) Cancer Letters , vol.96 , Issue.1 , pp. 49-53
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3
  • 45
    • 0030724970 scopus 로고    scopus 로고
    • A step toward computer-assisted mammography using evolutionary programming and neural networks
    • Fogel, D. B., Wasson, E. C., Boughton, E. M., & Porto, V. W. (1997). A step toward computer-assisted mammography using evolutionary programming and neural networks. Cancer Letters, 119(1), 93-97.
    • (1997) Cancer Letters , vol.119 , Issue.1 , pp. 93-97
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3    Porto, V.W.4
  • 47
    • 23044523725 scopus 로고    scopus 로고
    • Principal components analysis for descriptive epidemiology
    • Giuliani, A., & Benigni, R. (2000). Principal components analysis for descriptive epidemiology. Lecture Notes in Artificial Intelligence, 1933, 308-313.
    • (2000) Lecture Notes in Artificial Intelligence , vol.1933 , pp. 308-313
    • Giuliani, A.1    Benigni, R.2
  • 49
    • 0031904206 scopus 로고    scopus 로고
    • Genetic programming for classification and feature selection: Analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies
    • Gray, H. F., Maxwell, R. J., Martinez-Perez, I., Arus, C., & Cerdan, S. (1998). Genetic programming for classification and feature selection: Analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies. NMR in Biomedicine, 11(4-5), 217-224.
    • (1998) NMR in Biomedicine , vol.11 , Issue.4-5 , pp. 217-224
    • Gray, H.F.1    Maxwell, R.J.2    Martinez-Perez, I.3    Arus, C.4    Cerdan, S.5
  • 50
    • 0028037474 scopus 로고
    • Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients
    • Grigsby, J., Kooken, R., & Hershberger, J. (1994). Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients. Archives of Physical and Medical Rehabilitation, 75, 1077-1081.
    • (1994) Archives of Physical and Medical Rehabilitation , vol.75 , pp. 1077-1081
    • Grigsby, J.1    Kooken, R.2    Hershberger, J.3
  • 53
    • 0034192615 scopus 로고    scopus 로고
    • The learning classifier system: An evolutionary computation approach to knowledge discovery in epidemiologic surveillance
    • Holmes, J. H., Durbin, D. R., & Winston, F. K. (2000). The learning classifier system: An evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artificial Intelligence in Medicine, 19, 53-74.
    • (2000) Artificial Intelligence in Medicine , vol.19 , pp. 53-74
    • Holmes, J.H.1    Durbin, D.R.2    Winston, F.K.3
  • 54
    • 0034914243 scopus 로고    scopus 로고
    • AI in medicine on its way from knowledge-intensive systems to data-intensive systems
    • Horn, W. (2001). AI in medicine on its way from knowledge-intensive systems to data-intensive systems. Artificial Intelligence in Medicine, 23, 5-12.
    • (2001) Artificial Intelligence in Medicine , vol.23 , pp. 5-12
    • Horn, W.1
  • 55
    • 0036550136 scopus 로고    scopus 로고
    • Data mining to support simulation modelling of patient flow in hospitals
    • Isken, M. W., & Rajagopalan, B. (2002). Data mining to support simulation modelling of patient flow in hospitals. Journal of Medical Systems, 26(2), 179-197.
    • (2002) Journal of Medical Systems , vol.26 , Issue.2 , pp. 179-197
    • Isken, M.W.1    Rajagopalan, B.2
  • 58
    • 0030951433 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma
    • Jefferson, M. F., Pendleton, N., Lucas, S. B., & Horan, M. A. (1997). Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer, 79(7), 1338-1342.
    • (1997) Cancer , vol.79 , Issue.7 , pp. 1338-1342
    • Jefferson, M.F.1    Pendleton, N.2    Lucas, S.B.3    Horan, M.A.4
  • 61
    • 0028156822 scopus 로고
    • Effects of computer-based clinical decision support systems on clinician performance and patient outcome: A critical appraisal of research
    • Johnston,M.E., Langton,K.B., Hayes,R.B., & Mathieu,A. (1994). Effects of computer-based clinical decision support systems on clinician performance and patient outcome: A critical appraisal of research. Annals of Internal Medicine, 120, 135-142.
    • (1994) Annals of Internal Medicine , vol.120 , pp. 135-142
    • Johnston, M.E.1    Langton, K.B.2    Hayes, R.B.3    Mathieu, A.4
  • 62
    • 0034748672 scopus 로고    scopus 로고
    • The role of data mining technology in the identification of signals of possible adverse drug reactions: Values and limitations
    • Jones,J.K. (2001). The role of data mining technology in the identification of signals of possible adverse drug reactions: Values and limitations. Current Therapeutic Research, 62(9), 664-673.
    • (2001) Current Therapeutic Research , vol.62 , Issue.9 , pp. 664-673
    • Jones, J.K.1
  • 63
    • 0035407448 scopus 로고    scopus 로고
    • Data mining applications in the context of case mix
    • Koh,H.C., & Leong,S.K. (2001). Data mining applications in the context of case mix. Annals of the Academy of Medicine, 30(4), 41-49.
    • (2001) Annals of the Academy of Medicine , vol.30 , Issue.4 , pp. 41-49
    • Koh, H.C.1    Leong, S.K.2
  • 65
    • 0002485248 scopus 로고    scopus 로고
    • Application of machine learning in medical diagnosis
    • R.S. Michalsko,I. Bratko & M. Kubat (Eds.). New York: John Wiley
    • Kononenko,I., Bratko,I., & Kukar,M. (1998). Application of machine learning in medical diagnosis. In R.S. Michalsko,I. Bratko & M. Kubat (Eds.). Machine learning and data mining: Methods and applications (pp. 389-408). New York: John Wiley.
    • (1998) Machine Learning and Data Mining: Methods and Applications , pp. 389-408
    • Kononenko, I.1    Bratko, I.2    Kukar, M.3
  • 67
    • 0025557839 scopus 로고
    • Genetically breeding populations of computer programs to solve problems in artificial intelligence
    • Koza, J. R. (1990b). Genetically breeding populations of computer programs to solve problems in artificial intelligence. Proceedings of the Second International Conference on Tools for AI, 819-827.
    • (1990) Proceedings of the Second International Conference on Tools for AI , pp. 819-827
    • Koza, J.R.1
  • 68
    • 0035041653 scopus 로고    scopus 로고
    • Data mining with decision trees for diagnosis of breast tumour in medical ultrasonic images
    • Kuo, W. J., Chang, R. F., Chen, D. R., & Lee, C. C. (2001). Data mining with decision trees for diagnosis of breast tumour in medical ultrasonic images. Breast Cancer Research and Treatment, 66, 51-57.
    • (2001) Breast Cancer Research and Treatment , vol.66 , pp. 51-57
    • Kuo, W.J.1    Chang, R.F.2    Chen, D.R.3    Lee, C.C.4
  • 70
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • Lavrač, N. (1999a). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16, 3-23.
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 3-23
    • Lavrač, N.1
  • 71
    • 84956855624 scopus 로고    scopus 로고
    • Machine learning for data mining in medicine
    • Lavrač, N. (1999b). Machine learning for data mining in medicine. Lecture Notes in Artificial Intelligence, 1620, 47-62.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1620 , pp. 47-62
    • Lavrač, N.1
  • 72
    • 84860424081 scopus 로고    scopus 로고
    • Data mining techniques applied to medical information
    • Lee, I. N., Liao, S. C., & Embrechts, M. (2000). Data mining techniques applied to medical information. Medical Informatics, 25(2), 81-102.
    • (2000) Medical Informatics , vol.25 , Issue.2 , pp. 81-102
    • Lee, I.N.1    Liao, S.C.2    Embrechts, M.3
  • 73
    • 0035156243 scopus 로고    scopus 로고
    • Knowledge management and its link to artificial intelligence
    • Liebowitz, J. (2001a). Knowledge management and its link to artificial intelligence. Expert Systems with Applications, 20, 1-6.
    • (2001) Expert Systems with Applications , vol.20 , pp. 1-6
    • Liebowitz, J.1
  • 74
    • 0035422218 scopus 로고    scopus 로고
    • If you are a dog lover, build expert systems; if you are a cat lover, build neural networks
    • Liebowitz, J. (2001b). If you are a dog lover, build expert systems; if you are a cat lover, build neural networks. Expert Systems with Applications, 21, 63.
    • (2001) Expert Systems with Applications , vol.21 , pp. 63
    • Liebowitz, J.1
  • 77
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lipmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4, 4-22.
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 4-22
    • Lipmann, R.P.1
  • 78
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisboa, P. J. G. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks, 15(1), 11-39.
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 11-39
    • Lisboa, P.J.G.1
  • 79
    • 0034868592 scopus 로고    scopus 로고
    • What is bioinformatics? A proposed definition and overview of the field
    • Luscombe, N. M., Greenbaum, D., Gerstein, M. (2001). What is bioinformatics? A proposed definition and overview of the field. Methods of Information in Medicine, 40(4), 346-358.
    • (2001) Methods of Information in Medicine , vol.40 , Issue.4 , pp. 346-358
    • Luscombe, N.M.1    Greenbaum, D.2    Gerstein, M.3
  • 83
    • 0032918916 scopus 로고    scopus 로고
    • Dynamic and static approaches to clinical data mining
    • McSherry, D. (1999). Dynamic and static approaches to clinical data mining. Artificial Intelligence in Medicine, 16, 97-115.
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 97-115
    • McSherry, D.1
  • 85
    • 0034450189 scopus 로고    scopus 로고
    • Opportunities at the intersection of bioinformatics and health informatics: A case study
    • Miller, P. L. (2000). Opportunities at the intersection of bioinformatics and health informatics: A case study. Journal of the American Medical Informatics Association, 7(5), 431-438.
    • (2000) Journal of the American Medical Informatics Association , vol.7 , Issue.5 , pp. 431-438
    • Miller, P.L.1
  • 87
    • 0027465617 scopus 로고
    • A genetic algorithm to improve a neural network performance to predict a patient's response to Warfarin
    • Naranyan, M. N., & Lucas, S. B. (1993). A genetic algorithm to improve a neural network performance to predict a patient's response to Warfarin. Methods of Information in Medicine, 32, 55-58.
    • (1993) Methods of Information in Medicine , vol.32 , pp. 55-58
    • Naranyan, M.N.1    Lucas, S.B.2
  • 94
    • 0032542897 scopus 로고    scopus 로고
    • What's wrong with Bonferroni adjustments
    • Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical Journal, 316, 1236-1238.
    • (1998) British Medical Journal , vol.316 , pp. 1236-1238
    • Perneger, T.V.1
  • 95
    • 0024695171 scopus 로고
    • The evolution strategy: A search strategy used in the individual optimisation of electrical parameters for therapeutic carotid sinus nerve stimulation
    • Peters, T. K., Koralewski, H. E., & Zerbst, E. W. (1989). The evolution strategy: A search strategy used in the individual optimisation of electrical parameters for therapeutic carotid sinus nerve stimulation. IEEE Transactions on Biomedical Engineering, 36(7), 668-675.
    • (1989) IEEE Transactions on Biomedical Engineering , vol.36 , Issue.7 , pp. 668-675
    • Peters, T.K.1    Koralewski, H.E.2    Zerbst, E.W.3
  • 98
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural network for prognostic and diagnostic classification in oncology
    • Schwarzer, G., Vach, W., & Schumacher, M. (2000). On the misuses of artificial neural network for prognostic and diagnostic classification in oncology. Statistics in Medicine, 19, 451-561.
    • (2000) Statistics in Medicine , vol.19 , pp. 451-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 99
    • 0030087643 scopus 로고    scopus 로고
    • Extracting rules from pruned neural networks for breast cancer diagnosis
    • Setiono, R. (1996). Extracting rules from pruned neural networks for breast cancer diagnosis. Artificial Intelligence in Medicine, 8, 37-51.
    • (1996) Artificial Intelligence in Medicine , vol.8 , pp. 37-51
    • Setiono, R.1
  • 100
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono, R. (2000). Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine, 18, 205-219.
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 103
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms: An empirical comparison between different approaches
    • Sierra, B., & Larrañaga, P. (1998). Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms: An empirical comparison between different approaches. Artificial Intelligence in Medicine, 14, 215-230.
    • (1998) Artificial Intelligence in Medicine , vol.14 , pp. 215-230
    • Sierra, B.1    Larrañaga, P.2
  • 104
    • 0344892145 scopus 로고    scopus 로고
    • Data warehouses and clinical data warehouses
    • M. J. Ball, J. V. Douglas, & D. E. Garets (Eds.). New York: Springer
    • Smith, A., & Nelson, M. (1999). Data warehouses and clinical data warehouses. In M. J. Ball, J. V. Douglas, & D. E. Garets (Eds.), Strategies and technologies for healthcare information (pp. 17-31). New York: Springer.
    • (1999) Strategies and Technologies for Healthcare Information , pp. 17-31
    • Smith, A.1    Nelson, M.2
  • 105
    • 0029125655 scopus 로고
    • Has general practitioner computing made a difference to patient care? A systematic review of published reports
    • Sullivan, F., & Mitchell, E. (1995). Has general practitioner computing made a difference to patient care? A systematic review of published reports. British Medical Journal, 311, 848-852.
    • (1995) British Medical Journal , vol.311 , pp. 848-852
    • Sullivan, F.1    Mitchell, E.2
  • 106
    • 84982455478 scopus 로고
    • Two medical literatures that are logically but not bibliographically connected
    • Swanson, D. R. (1987). Two medical literatures that are logically but not bibliographically connected. Journal of the American Society for Information Science, 38, 228-233.
    • (1987) Journal of the American Society for Information Science , vol.38 , pp. 228-233
    • Swanson, D.R.1
  • 107
    • 0033467661 scopus 로고    scopus 로고
    • Implicit text linkages between Medline records: Using Arrowsmith as an aid to scientific discovery
    • Swanson, D. R. & Smalheiser, N. R. (1999). Implicit text linkages between Medline records: Using Arrowsmith as an aid to scientific discovery. Library Trends, 48, 48-59.
    • (1999) Library Trends , vol.48 , pp. 48-59
    • Swanson, D.R.1    Smalheiser, N.R.2
  • 110
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231.
    • (1996) Journal of Clinical Epidemiology , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 111
    • 0004217877 scopus 로고
    • London: Butterworths. Retrieved November 28, 2002
    • van Rijsabergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths. Retrieved November 28, 2002, from http://www.dcs.gla.ac.uk/Keith/Preface.html
    • (1979) Information Retrieval (2nd Ed.)
    • Van Rijsabergen, C.J.1
  • 112
    • 0033619476 scopus 로고    scopus 로고
    • Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique
    • Walker, A. J., Cross, S. S., & Harrison, R. F. (1999). Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. Lancet, 354, 1518-1521.
    • (1999) Lancet , vol.354 , pp. 1518-1521
    • Walker, A.J.1    Cross, S.S.2    Harrison, R.F.3
  • 114
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu, Y., Giger, M. L., Doi, K., Vyborny, C. J., Schmidt, R. A., & Metz, C. E. (1993). Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology, 187(1), 81-87.
    • (1993) Radiology , vol.187 , Issue.1 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 115
    • 84971357232 scopus 로고
    • Commentary: Prognostic models; clinically useful or quickly forgotten?
    • Wyatt, J. C., & Altman, D. G. (1995). Commentary: Prognostic models; clinically useful or quickly forgotten? British Medical Journal, 311, 1539-1541.
    • (1995) British Medical Journal , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2
  • 116
    • 0034726204 scopus 로고    scopus 로고
    • Comparison of the performance of neural network methods and Cox regression for censored survival data
    • Xiang, A., Lapuertab, P., Ryutova, A., Buckleya, J., & Azena, S. (2000). Comparison of the performance of neural network methods and Cox regression for censored survival data. Computational Statistics & Data Analysis, 34(2), 243-257.
    • (2000) Computational Statistics & Data Analysis , vol.34 , Issue.2 , pp. 243-257
    • Xiang, A.1    Lapuertab, P.2    Ryutova, A.3    Buckleya, J.4    Azena, S.5
  • 117
    • 23044534437 scopus 로고    scopus 로고
    • Mining interesting rules in meningitis data by cooperatively using GDT-RS and RSBR
    • Zhong, N., & Dong, J. (2002). Mining interesting rules in meningitis data by cooperatively using GDT-RS and RSBR. Lecture Notes in Artificial Intelligence, 2336, 405-416.
    • (2002) Lecture Notes in Artificial Intelligence , vol.2336 , pp. 405-416
    • Zhong, N.1    Dong, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.