메뉴 건너뛰기




Volumn 148, Issue 4, 1999, Pages 265-290

Symmetry of ground states of quasilinear elliptic equations

(2)  Serrin, James a   Zou, Henghui a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033463505     PISSN: 00039527     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002050050162     Document Type: Article
Times cited : (114)

References (21)
  • 1
    • 70350415848 scopus 로고
    • A note on radiality of solutions of p-Laplacian equation
    • BADIALE, M. & E. NABANA, A note on radiality of solutions of p-Laplacian equation, Applicable Anal., 52 (1994), 35-43.
    • (1994) Applicable Anal. , vol.52 , pp. 35-43
    • Badiale, M.1    Nabana, E.2
  • 4
    • 0040517354 scopus 로고    scopus 로고
    • Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation
    • CORTÁZAR, C., M. ELGUETA & P. FELMER, Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Comm. Part. Diff. Eqs., 21 (1996), 507-520.
    • (1996) Comm. Part. Diff. Eqs. , vol.21 , pp. 507-520
    • Cortázar, C.1    Elgueta, M.2    Felmer, P.3
  • 5
    • 84859877074 scopus 로고    scopus 로고
    • Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results
    • DAMASCELLI, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, to appear, Ann. Inst. H. Poincaré.
    • Ann. Inst. H. Poincaré
    • Damascelli, L.1
  • 6
    • 0033436674 scopus 로고    scopus 로고
    • Symmetry of ground states of p-Laplace equations via the moving plane method
    • DAMASCELLI, L., F. PACELLA & M. RAMASWAMY, Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rational Mech. Anal. 148 (1999), 291-316
    • (1999) Arch. Rational Mech. Anal. , vol.148 , pp. 291-316
    • Damascelli, L.1    Pacella, F.2    Ramaswamy, M.3
  • 7
    • 0001472514 scopus 로고
    • 1+α local regularity of weak solutions of degenerate elliptic equations
    • 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), no.8, 827-850.
    • (1983) Nonlinear Anal. , vol.7 , Issue.8 , pp. 827-850
    • Dibenedetto, E.1
  • 8
    • 0011544462 scopus 로고
    • Radial symmetry of the ground states for a class of quasilinear elliptic equations
    • Springer-Verlag, New York
    • FRANCHI, B. & E. LANCONELLI, Radial symmetry of the ground states for a class of quasilinear elliptic equations, in 'Nonlinear diffusion equations and their equilibrium states, Springer-Verlag, New York, 1988.
    • (1988) Nonlinear Diffusion Equations and Their Equilibrium States
    • Franchi, B.1    Lanconelli, E.2
  • 13
    • 0000925067 scopus 로고
    • Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains
    • LI, C.-M., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Part. Diff. Eqs., 16 (1991), 585-615.
    • (1991) Comm. Part. Diff. Eqs. , vol.16 , pp. 585-615
    • Li, C.-M.1
  • 16
    • 0001733339 scopus 로고    scopus 로고
    • Uniqueness of ground states for quasilinear elliptic operators
    • PUCCI, P. & J. SERRIN, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J., (1998).
    • (1998) Indiana Univ. Math. J.,
    • Pucci, P.1    Serrin, J.2
  • 17
    • 0039966550 scopus 로고    scopus 로고
    • A strong maximum principle for quasilinear elliptic equations
    • PUCCI, P., J. SERRIN & H. ZOU, A strong maximum principle for quasilinear elliptic equations, to appear, J. Math. Pures Appl., 1999.
    • (1999) J. Math. Pures Appl.
    • Pucci, P.1    Serrin, J.2    Zou, H.3
  • 18
    • 0001358147 scopus 로고
    • A symmetry problem in potential theory
    • SERRIN, J., A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
    • (1971) Arch. Rational Mech. Anal. , vol.43 , pp. 304-318
    • Serrin, J.1
  • 19
    • 33846445540 scopus 로고
    • Regularity for a more general class of quasilinear elliptic equations
    • TOLKSDORF, P., Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eqs., 51 (1984), 126-150.
    • (1984) J. Diff. Eqs. , vol.51 , pp. 126-150
    • Tolksdorf, P.1
  • 20
    • 0001335714 scopus 로고
    • A strong maximum principle for some quasilinear elliptic equations
    • VAZQUEZ, J.-L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Opt., 112 (1984), 191-202.
    • (1984) Appl. Math. Opt. , vol.112 , pp. 191-202
    • Vazquez, J.-L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.