-
1
-
-
0012392952
-
-
a) M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Sciencs 1998, 281, 2013.
-
(1998)
Sciencs
, vol.281
, pp. 2013
-
-
Bruchez Jr., M.1
Moronne, M.2
Gin, P.3
Weiss, S.4
Alivisatos, A.P.5
-
3
-
-
0034645622
-
-
c) H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, J. Am. Chem. Soc. 2000, 122, 12142.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 12142
-
-
Mattoussi, H.1
Mauro, J.M.2
Goldman, E.R.3
Anderson, G.P.4
Sundar, V.C.5
Mikulec, F.V.6
Bawendi, M.G.7
-
4
-
-
0028088282
-
-
a) V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994, 370, 354.
-
(1994)
Nature
, vol.370
, pp. 354
-
-
Colvin, V.L.1
Schlamp, M.C.2
Alivisatos, A.P.3
-
5
-
-
0029277651
-
-
b) B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett. 1995, 66, 1316.
-
(1995)
Appl. Phys. Lett.
, vol.66
, pp. 1316
-
-
Dabbousi, B.O.1
Bawendi, M.G.2
Onitsuka, O.3
Rubner, M.F.4
-
6
-
-
0031382080
-
-
c) M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82, 5837.
-
(1997)
J. Appl. Phys.
, vol.82
, pp. 5837
-
-
Schlamp, M.C.1
Peng, X.2
Alivisatos, A.P.3
-
7
-
-
0037154802
-
-
d) N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 2002, 295, 1506.
-
(2002)
Science
, vol.295
, pp. 1506
-
-
Tessler, N.1
Medvedev, V.2
Kazes, M.3
Kan, S.4
Banin, U.5
-
8
-
-
0347579846
-
-
e) S. Coe, W.-K. Woo, M. G. Bawendi, V. Bulovic, Nature 2002, 420, 800.
-
(2002)
Nature
, vol.420
, pp. 800
-
-
Coe, S.1
Woo, W.-K.2
Bawendi, M.G.3
Bulovic, V.4
-
9
-
-
0034644601
-
-
a) V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, Science 2000, 290, 314.
-
(2000)
Science
, vol.290
, pp. 314
-
-
Klimov, V.I.1
Mikhailovsky, A.A.2
Xu, S.3
Malko, A.4
Hollingsworth, J.A.5
Leatherdale, C.A.6
Eisler, H.-J.7
Bawendi, M.G.8
-
10
-
-
0037133073
-
-
b) M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, Adv. Mater. 2002, 14, 317.
-
(2002)
Adv. Mater.
, vol.14
, pp. 317
-
-
Kazes, M.1
Lewis, D.Y.2
Ebenstein, Y.3
Mokari, T.4
Banin, U.5
-
11
-
-
0037123566
-
-
c) V. C. Sundar, H.-J. Eisler, M. G. Bawendi, Adv. Mater. 2002, 14, 739.
-
(2002)
Adv. Mater.
, vol.14
, pp. 739
-
-
Sundar, V.C.1
Eisler, H.-J.2
Bawendi, M.G.3
-
12
-
-
79956056124
-
-
d) H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. I. Klimov, Appl. Phys. Lett. 2002, 80, 4614.
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 4614
-
-
Eisler, H.-J.1
Sundar, V.C.2
Bawendi, M.G.3
Walsh, M.4
Smith, H.I.5
Klimov, V.I.6
-
13
-
-
79955997290
-
-
A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, V. I. Klimov, Appl. Phys. Lett. 2002, 81, 1303.
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 1303
-
-
Malko, A.V.1
Mikhailovsky, A.A.2
Petruska, M.A.3
Hollingsworth, J.A.4
Htoon, H.5
Bawendi, M.G.6
Klimov, V.I.7
-
14
-
-
0000939999
-
-
C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 8706
-
-
Murray, C.B.1
Norris, D.J.2
Bawendi, M.G.3
-
15
-
-
0035018208
-
-
a) C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, IBM J. Res. & Dev. 2001, 45, 47.
-
(2001)
IBM J. Res. & Dev.
, vol.45
, pp. 47
-
-
Murray, C.B.1
Sun, S.2
Gaschler, W.3
Doyle, H.4
Betley, T.A.5
Kagan, C.R.6
-
16
-
-
0000535511
-
-
b) L. Qu, Z. A. Peng, X. Peng, Nano Lett. 2001, 1, 333.
-
(2001)
Nano Lett.
, vol.1
, pp. 333
-
-
Qu, L.1
Peng, Z.A.2
Peng, X.3
-
18
-
-
0344512579
-
-
US Patent 20 020 071952, 2002
-
d) M. G. Bawendi, N. E. Stott, US Patent 20 020 071952, 2002.
-
-
-
Bawendi, M.G.1
Stott, N.E.2
-
19
-
-
0032479014
-
-
X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 720, 5343.
-
(1998)
J. Am. Chem. Soc.
, vol.720
, pp. 5343
-
-
Peng, X.1
Wickham, J.2
Alivisatos, A.P.3
-
20
-
-
0141516596
-
-
E. M. Chan, R. A. Mathies, A. P. Alivisatos, Nano Lett. 2003, 3, 199.
-
(2003)
Nano Lett.
, vol.3
, pp. 199
-
-
Chan, E.M.1
Mathies, R.A.2
Alivisatos, A.P.3
-
21
-
-
0036434074
-
-
H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara, P. Mulvaney, Chem. Commun. 2002, 2844.
-
(2002)
Chem. Commun.
, pp. 2844
-
-
Nakamura, H.1
Yamaguchi, Y.2
Miyazaki, M.3
Maeda, H.4
Uehara, M.5
Mulvaney, P.6
-
22
-
-
0037161782
-
-
J. B. Edel, R. Fortt, J. C. deMello, A. J. deMello, Chem. Commun. 2002, 1136.
-
(2002)
Chem. Commun.
, pp. 1136
-
-
Edel, J.B.1
Fortt, R.2
DeMello, J.C.3
DeMello, A.J.4
-
23
-
-
0000798403
-
-
a) H. Mattoussi, A. W. Cumming, C. B. Murray, M. G. Bawendi, R. Ober, Phys. Rev. B 1998, 58, 7850.
-
(1998)
Phys. Rev. B
, vol.58
, pp. 7850
-
-
Mattoussi, H.1
Cumming, A.W.2
Murray, C.B.3
Bawendi, M.G.4
Ober, R.5
-
24
-
-
0344512580
-
-
Ph.D. Thesis, Massachusetts Institute of Technology
-
b) M. K. Kuno, Ph.D. Thesis, Massachusetts Institute of Technology 1998.
-
(1998)
-
-
Kuno, M.K.1
-
25
-
-
0037044046
-
-
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, M. G. Bawendi, J. Phys. Chem. B 2002, 106, 7619. We have made the assumption that the number of dots is equal to the number of nuclei, which is true as long as growth does not proceed extensively by an Ostwald ripening mechanism. In Ostwald ripening, the concentration of monomers is low enough that smaller dots dissolve at the expense of larger dots, and we would observe a decrease in the number of dots with sufficiently long growth time. In all of the data presented here, the residence time was kept short enough so that this process did not occur.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 7619
-
-
Leatherdale, A.1
Woo, W.-K.2
Mikulec, F.V.3
Bawendi, M.G.4
-
26
-
-
0003782321
-
-
Eds: W. M. Rohsenow, J. P. Harnett, Y. I. Cho, 3rd ed. McGraw Hill, New York, Ch.5
-
See for example: a) M. A. Edadian, Z. F. Dong, in Handbook of Heat Transfer (Eds: W. M. Rohsenow, J. P. Harnett, Y. I. Cho), 3rd ed. McGraw Hill, New York 1998, Ch.5.
-
(1998)
Handbook of Heat Transfer
-
-
Edadian, M.A.1
Dong, Z.F.2
-
27
-
-
85136326938
-
-
-1 for the fluid thermal conductivity, density, and heat capacity, respectively. We took as the boundary condition that the fluid at the channel wall is at a constant 25 °C before the heated region and a constant 320 °C within the heated region.
-
(1956)
Trans. ASME
, vol.78
, pp. 441
-
-
Sellars, J.R.1
Tribus, M.2
Klein, J.S.3
-
29
-
-
0032694517
-
-
Wiley, New York
-
2)/(48D), where R is the radius of the channel, u is the average flow velocity, and D is the diffusion coefficient. D was estimated using the Stokes-Einstein equation. The fluid viscosity was extrapolated from experimental values for squalane (U. G. Krahn, G. Luft, J. Chem. Eng. Data 1994, 39, 670) using a modified Arrhenius expression.
-
(1999)
Chemical Reaction Engineering, 3rd Ed.
-
-
Levenspiel, O.1
-
30
-
-
0028515977
-
-
2)/(48D), where R is the radius of the channel, u is the average flow velocity, and D is the diffusion coefficient. D was estimated using the Stokes-Einstein equation. The fluid viscosity was extrapolated from experimental values for squalane (U. G. Krahn, G. Luft, J. Chem. Eng. Data 1994, 39, 670) using a modified Arrhenius expression.
-
(1994)
J. Chem. Eng. Data
, vol.39
, pp. 670
-
-
Krahn, U.G.1
Luft, G.2
-
31
-
-
0345374796
-
-
note
-
2 bubbles into the precursor stream, and they observed somewhat improved size distributions in comparison to the homogeneous flow case. We have observed similar results when a lower boiling solvent, di-n-octyl ether rather than squalane, is used. At temperatures greater than -280 °C, the solvent boils within the heated section, forming alternating segments of gas and liquid within the channel. However, it was difficult to estimate the flow velocity of the fluid in the heated region due to the nature of the bubble formation. Experiments are underway to more controllably introduce a gas phase into the liquid precursor stream.
-
-
-
-
33
-
-
0035857217
-
-
D. V. Talapin, A. L. Rogach, M. Haase, H. Weller, J. Phys. Chem. B 2001, 105, 12278.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 12278
-
-
Talapin, D.V.1
Rogach, A.L.2
Haase, M.3
Weller, H.4
-
34
-
-
0344081382
-
-
note
-
Under some conditions, such as a very broad initial size distribution, it is possible for Ostwald ripening to lead to narrowing of the size distribution [16]. Such conditions were not present in the data shown here.
-
-
-
-
35
-
-
0345374795
-
-
note
-
The following reference dyes (and quantum yields) were used: Rhodamine 560 chloride in basic ethanol (92%), Rhodamine 590 chloride in methanol (89 %), Rhodamine 610 chloride in methanol (57 %), and Rhodamine 640 perchlorate in methanol (100 %).
-
-
-
|