-
1
-
-
0004142484
-
-
John Wiley & Sons: New York
-
See, e.g.: Minkin, V. I.; Glukhotsev, M. N.; Simkin, B. Ya. Aromaticity and Antiaromaticity. Electronic and Structural Aspects; John Wiley & Sons: New York, 1994. Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209.
-
(1994)
Aromaticity and Antiaromaticity. Electronic and Structural Aspects
-
-
Minkin, V.I.1
Glukhotsev, M.N.2
Simkin, B.Ya.3
-
2
-
-
0000379599
-
-
See, e.g.: Minkin, V. I.; Glukhotsev, M. N.; Simkin, B. Ya. Aromaticity and Antiaromaticity. Electronic and Structural Aspects; John Wiley & Sons: New York, 1994. Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209.
-
(1996)
Pure Appl. Chem.
, vol.68
, pp. 209
-
-
Schleyer, P.V.R.1
Jiao, H.2
-
3
-
-
33947436640
-
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1941)
J. Am. Chem. Soc.
, vol.63
, pp. 41
-
-
Mulliken, R.S.1
Rieke, C.A.2
Brown, W.G.3
-
4
-
-
0000497634
-
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1968)
J. Am. Chem. Soc.
, vol.91
, pp. 811
-
-
Dauben H.J., Jr.1
Wilson, J.D.2
Laity, J.L.3
-
5
-
-
0042192313
-
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1968)
J. Am. Chem. Soc.
, vol.91
, pp. 1911
-
-
Dauben H.J., Jr.1
Wilson, J.D.2
Laity, J.L.3
-
6
-
-
0000239121
-
-
Synder, J. P., Ed.; Academic Press: New York
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1971)
Nonbenzoid Aromatics
, vol.2
, pp. 167-206
-
-
Dauben H.J., Jr.1
Wilson, J.D.2
Laity, J.L.3
-
7
-
-
0011566089
-
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1971)
Top. Curr. Chem.
, vol.24
, pp. 33
-
-
Labarre, J.-F.1
Crasnier, F.2
-
8
-
-
0043194527
-
-
Mulliken R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 811. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 91, 1911. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J, L. In Nonbenzoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. II, pp 167-206. Labarre, J.-F.; Crasnier, F. Top. Curr. Chem. 1971, 24, 33. Haddon, R. C.; Haddon, V. R.; Jackman, L. M. Top. Curr. Chem. 1971, 16, 112.
-
(1971)
Top. Curr. Chem.
, vol.16
, pp. 112
-
-
Haddon, R.C.1
Haddon, V.R.2
Jackman, L.M.3
-
9
-
-
0001627107
-
-
Benson, R. C.; Flygare, W. H. J. Am. Chem. Soc. 1970, 92, 7523. Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem. Soc. 1973, 95, 7961. Kutzelnigg, W.; Fleischer, P.; Lazzeretti, P.; Müllenkamp, V. J. Am. Chem. Soc. 1994, 116, 5298.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 7523
-
-
Benson, R.C.1
Flygare, W.H.2
-
10
-
-
0001023049
-
-
Benson, R. C.; Flygare, W. H. J. Am. Chem. Soc. 1970, 92, 7523. Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem. Soc. 1973, 95, 7961. Kutzelnigg, W.; Fleischer, P.; Lazzeretti, P.; Müllenkamp, V. J. Am. Chem. Soc. 1994, 116, 5298.
-
(1973)
J. Am. Chem. Soc.
, vol.95
, pp. 7961
-
-
Schmalz, T.G.1
Norris, C.L.2
Flygare, W.H.3
-
11
-
-
0000446410
-
-
Benson, R. C.; Flygare, W. H. J. Am. Chem. Soc. 1970, 92, 7523. Schmalz, T. G.; Norris, C. L.; Flygare, W. H. J. Am. Chem. Soc. 1973, 95, 7961. Kutzelnigg, W.; Fleischer, P.; Lazzeretti, P.; Müllenkamp, V. J. Am. Chem. Soc. 1994, 116, 5298.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 5298
-
-
Kutzelnigg, W.1
Fleischer, P.2
Lazzeretti, P.3
Müllenkamp, V.4
-
13
-
-
0001621298
-
-
(b) Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B. Angew. Chem. 1995, 107, 332; Angew. Chem., Int. Ed. Engl. 1995, 34, 337.
-
(1995)
Angew. Chem.
, vol.107
, pp. 332
-
-
Schleyer, P.V.R.1
Freeman, P.K.2
Jiao, H.3
Goldfuss, B.4
-
14
-
-
33748247829
-
-
(b) Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B. Angew. Chem. 1995, 107, 332; Angew. Chem., Int. Ed. Engl. 1995, 34, 337.
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 337
-
-
-
16
-
-
0011190497
-
-
(d) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317;
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6317
-
-
Schleyer, P.V.R.1
Maerker, C.2
Dransfeld, A.3
Jiao, H.4
Hommes, N.J.R.V.E.5
-
17
-
-
0000169077
-
-
Jiao, H.; Schleyer, P. v. R. J. Chem. Soc., Faraday Trans. 1994, 90, 1559.
-
(1994)
J. Chem. Soc., Faraday Trans.
, vol.90
, pp. 1559
-
-
Jiao, H.1
Schleyer, P.V.R.2
-
18
-
-
0002068159
-
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1946)
J. Am. Chem. Soc.
, vol.68
, pp. 488
-
-
Sommer, L.H.1
Dorfmann, E.2
Goldberg, L.M.3
Whitmore, F.C.4
-
19
-
-
33845183013
-
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 819
-
-
Ibrahim, M.R.1
Jorgensen, W.L.2
-
20
-
-
0029814253
-
-
and references therein
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7867
-
-
Lambert, J.B.1
Zhao, Y.2
-
21
-
-
0002068159
-
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1992)
Angew. Chem.
, vol.104
, pp. 1103
-
-
Mayr, H.1
Basso, N.2
-
22
-
-
0002068159
-
Silicenium ions: Quantum Chemical Computations
-
Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1998)
The Chemistry of Organosilicon Compounds
, vol.2
-
-
Maerker, C.1
Schleyer, P.V.R.2
-
23
-
-
0002068159
-
-
Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester
-
This "β-silyl effect" has been discussed extensively in carbocations; see, e.g.: Sommer, L. H.; Dorfmann, E.; Goldberg, L. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 488. Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819. Even a stable β-silyl carbocation was reported: Lambert, J. B.; Zhao, Y. J. Am. Chem. Soc. 1996, 118, 7867 and references therein. Mayr, H.; Basso, N. Angew. Chem. 1992, 104, 1103. Maerker, C.; Schleyer, P. v. R. Silicenium ions: Quantum Chemical Computations. In The Chemistry of Organosilicon Compounds, Vol. 2; Rappoport, Z., Apeloig, Y., Eds.; John Wiley: New York, 1998. Apeloig, Y.; Müller, T. In Theory and Calculations in Dicoordinated Carbocations; Rappoport, Z., Stang, P. J., Eds.; John Wiley: Chichester, 1997.
-
(1997)
Theory and Calculations in Dicoordinated Carbocations
-
-
Apeloig, Y.1
Müller, T.2
-
25
-
-
0001580762
-
Photoelectron Spectra of Silicon Compounds
-
Patai, S., Rappaport, Z., Eds.; J. Wiley: Chichester
-
Bock, H.; Solouki, B. Photoelectron Spectra of Silicon Compounds. In The Chemistry of Silicon Compounds; Patai, S., Rappaport, Z., Eds.; J. Wiley: Chichester, 1989. Nyulászi, L.; Veszprémi, T.; Réffy, J. J. Organomet. Chem. 1993, 445, 29.
-
(1989)
The Chemistry of Silicon Compounds
-
-
Bock, H.1
Solouki, B.2
-
26
-
-
0001846017
-
-
Bock, H.; Solouki, B. Photoelectron Spectra of Silicon Compounds. In The Chemistry of Silicon Compounds; Patai, S., Rappaport, Z., Eds.; J. Wiley: Chichester, 1989. Nyulászi, L.; Veszprémi, T.; Réffy, J. J. Organomet. Chem. 1993, 445, 29.
-
(1993)
J. Organomet. Chem.
, vol.445
, pp. 29
-
-
Nyulászi, L.1
Veszprémi, T.2
Réffy, J.3
-
27
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Calculations were performed with the Gaussian 94 program package (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995). Geometries were optimized at the B3LYP/6- 311+G** (see also note 15) and B3LYP/3-21G(*) levels, resulting in similar structures. The NMR shielding tensors (in ppm) were calculated by the GIAO scheme; diamagnetic susceptibilities (in ppm) were calculated by the IGAIM method with the 6-311+G** basis at the B3LYP/6-311+G**. optimized geometries and with the 3-21G(*) basis at the B3LYP/3-21G(*) geometries. Second derivatives were calculated at the optimized structures at both B3LYP/3-21G(*) and the B3LYP/6-311+G** levels. SOS-DFT routines (Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1993, 204, 80) of the DeMon program package (Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898) were used with the BIII basis set (Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Princ. Prog. 1990, 23, 190) to compute the individual localized molecular orbital contributions to the NICS value by employing the Pipek-Mezey localization (Pipek, J.; Mezey, P. G. Chem. Phys. 1989, 90, 4916), which separates σ- and π-components of the double bonds; see also ref 18. Diamagnetic susceptibilities, calculated NMR chemical shifts on the β carbon atom, and total energies are given as Supporting Information.
-
(1995)
Gaussian 94, Revision E.2
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
28
-
-
0002037442
-
-
Calculations were performed with the Gaussian 94 program package (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995). Geometries were optimized at the B3LYP/6-311+G** (see also note 15) and B3LYP/3-21G(*) levels, resulting in similar structures. The NMR shielding tensors (in ppm) were calculated by the GIAO scheme; diamagnetic susceptibilities (in ppm) were calculated by the IGAIM method with the 6-311+G** basis at the B3LYP/6-311+G**. optimized geometries and with the 3-21G(*) basis at the B3LYP/3-21G(*) geometries. Second derivatives were calculated at the optimized structures at both B3LYP/3-21G(*) and the B3LYP/6-311+G** levels. SOS-DFT routines (Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1993, 204, 80) of the DeMon program package (Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898) were used with the BIII basis set (Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Princ. Prog. 1990, 23, 190) to compute the individual localized molecular orbital contributions to the NICS value by employing the Pipek-Mezey localization (Pipek, J.; Mezey, P. G. Chem. Phys. 1989, 90, 4916), which separates σ- and π-components of the double bonds; see also ref 18. Diamagnetic susceptibilities, calculated NMR chemical shifts on the β carbon atom, and total energies are given as Supporting Information.
-
(1993)
Chem. Phys. Lett.
, vol.204
, pp. 80
-
-
Malkin, V.G.1
Malkina, O.L.2
Salahub, D.R.3
-
29
-
-
0000814728
-
-
Calculations were performed with the Gaussian 94 program package (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995). Geometries were optimized at the B3LYP/6- 311+G** (see also note 15) and B3LYP/3-21G(*) levels, resulting in similar structures. The NMR shielding tensors (in ppm) were calculated by the GIAO scheme; diamagnetic susceptibilities (in ppm) were calculated by the IGAIM method with the 6-311+G** basis at the B3LYP/6-311+G**. optimized geometries and with the 3-21G(*) basis at the B3LYP/3-21G(*) geometries. Second derivatives were calculated at the optimized structures at both B3LYP/3-21G(*) and the B3LYP/6-311+G** levels. SOS-DFT routines (Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1993, 204, 80) of the DeMon program package (Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898) were used with the BIII basis set (Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Princ. Prog. 1990, 23, 190) to compute the individual localized molecular orbital contributions to the NICS value by employing the Pipek-Mezey localization (Pipek, J.; Mezey, P. G. Chem. Phys. 1989, 90, 4916), which separates σ- and π-components of the double bonds; see also ref 18. Diamagnetic susceptibilities, calculated NMR chemical shifts on the β carbon atom, and total energies are given as Supporting Information.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 5898
-
-
Malkin, V.G.1
Malkina, O.L.2
Casida, M.E.3
Salahub, D.R.4
-
30
-
-
0000572756
-
-
Calculations were performed with the Gaussian 94 program package (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995). Geometries were optimized at the B3LYP/6- 311+G** (see also note 15) and B3LYP/3-21G(*) levels, resulting in similar structures. The NMR shielding tensors (in ppm) were calculated by the GIAO scheme; diamagnetic susceptibilities (in ppm) were calculated by the IGAIM method with the 6-311+G** basis at the B3LYP/6-311+G**. optimized geometries and with the 3-21G(*) basis at the B3LYP/3-21G(*) geometries. Second derivatives were calculated at the optimized structures at both B3LYP/3-21G(*) and the B3LYP/6-311+G** levels. SOS-DFT routines (Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1993, 204, 80) of the DeMon program package (Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898) were used with the BIII basis set (Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Princ. Prog. 1990, 23, 190) to compute the individual localized molecular orbital contributions to the NICS value by employing the Pipek-Mezey localization (Pipek, J.; Mezey, P. G. Chem. Phys. 1989, 90, 4916), which separates σ- and π-components of the double bonds; see also ref 18. Diamagnetic susceptibilities, calculated NMR chemical shifts on the β carbon atom, and total energies are given as Supporting Information.
-
(1990)
NMR Basic Princ. Prog.
, vol.23
, pp. 190
-
-
Kutzelnigg, W.1
Fleischer, U.2
Schindler, M.3
-
31
-
-
3142753249
-
-
Calculations were performed with the Gaussian 94 program package (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head- Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995). Geometries were optimized at the B3LYP/6- 311+G** (see also note 15) and B3LYP/3-21G(*) levels, resulting in similar structures. The NMR shielding tensors (in ppm) were calculated by the GIAO scheme; diamagnetic susceptibilities (in ppm) were calculated by the IGAIM method with the 6-311+G** basis at the B3LYP/6-311+G**. optimized geometries and with the 3-21G(*) basis at the B3LYP/3-21G(*) geometries. Second derivatives were calculated at the optimized structures at both B3LYP/3-21G(*) and the B3LYP/6-311+G** levels. SOS-DFT routines (Malkin, V. G.; Malkina, O. L.; Salahub, D. R. Chem. Phys. Lett. 1993, 204, 80) of the DeMon program package (Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898) were used with the BIII basis set (Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Princ. Prog. 1990, 23, 190) to compute the individual localized molecular orbital contributions to the NICS value by employing the Pipek-Mezey localization (Pipek, J.; Mezey, P. G. Chem. Phys. 1989, 90, 4916), which separates σ- and π-components of the double bonds; see also ref 18. Diamagnetic susceptibilities, calculated NMR chemical shifts on the β carbon atom, and total energies are given as Supporting Information.
-
(1989)
Chem. Phys.
, vol.90
, pp. 4916
-
-
Pipek, J.1
Mezey, P.G.2
-
32
-
-
85012995804
-
-
Sieber et al. (Sieber, S.; Schleyer, P. v. R.; Gauss, J. J. Am. Chem. Soc. 1993, 115, 6987) have shown that the three-membered ring has considerable hyperconjugative participation in the phenonium ion 6π aromatic system.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 6987
-
-
Sieber, S.1
Schleyer, P.V.R.2
Gauss, J.3
-
36
-
-
0344643893
-
-
BDSHTRT (see ref 4c) was obtained as an average of the Gordy bond orders minus 1, and multipled by 100
-
BDSHTRT (see ref 4c) was obtained as an average of the Gordy bond orders minus 1, and multipled by 100.
-
-
-
-
37
-
-
0345074607
-
-
note
-
For 6, the LANL2DZ pseudopotential was used for tin and the D95 basis for the other atoms instead of 6-311+G** basis, d polarization functions (0.8 at carbon and 0.183 at tin) were added.
-
-
-
-
38
-
-
0002607996
-
-
Le Serre, S.; Guillemin, J.-C.; Kárpáti, T.; Soós, L.; Nyulászi, L.; Veszprémi, T. J. Org. Chem. 1998, 63, 59.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 59
-
-
Le Serre, S.1
Guillemin, J.-C.2
Kárpáti, T.3
Soós, L.4
Nyulászi, L.5
Veszprémi, T.6
-
39
-
-
0032054963
-
-
Wiberg and Marquez (Wiberg, K. B.; Marquez, M. J. Am. Chem. Soc. 1998, 120, 2932) have discussed recently the effect of F substitution in small rings, noting the preference of F substitution on C atoms with enhanced p character.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 2932
-
-
Wiberg, K.B.1
Marquez, M.2
-
40
-
-
0344643897
-
-
The nucleus-independent chemical shift (NICS) is defined as a negative of the NMR shielding computed, e.g., in the ring center; see refs 4d and 9
-
The nucleus-independent chemical shift (NICS) is defined as a negative of the NMR shielding computed, e.g., in the ring center; see refs 4d and 9.
-
-
-
-
41
-
-
0000662399
-
-
The NICS(π) values describe the π-contributions to the total NICS values (Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669).
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 12669
-
-
Schleyer, P.V.R.1
Jiao, H.2
Hommes, N.J.R.V.E.3
Malkin, V.G.4
Malkina, O.L.5
-
42
-
-
0003484909
-
-
Caos/CAMM Center: Nijmengen, The Netherlands
-
Schaftenaar, G. MOLDEN 2.5; Caos/CAMM Center: Nijmengen, The Netherlands, 1994.
-
(1994)
MOLDEN 2.5
-
-
Schaftenaar, G.1
|