-
1
-
-
0039003869
-
A note on strong compactness and resurrectibility
-
Apter, A.: A note on strong compactness and resurrectibility. Fundamenta Mathematicae 165, 285-290 (2000)
-
(2000)
Fundamenta Mathematicae
, vol.165
, pp. 285-290
-
-
Apter, A.1
-
2
-
-
23044531955
-
Aspects of strong compactness, measurability, and indestructibility
-
Apter, A.: Aspects of strong compactness, measurability, and indestructibility. Arch. Math. Logic 41, 705-719 (2002)
-
(2002)
Arch. Math. Logic
, vol.41
, pp. 705-719
-
-
Apter, A.1
-
4
-
-
0032396952
-
Laver indestructibility and the class of compact cardinals
-
Apter, A.: Laver indestructibility and the class of compact cardinals. J. Symbolic Logic 63, 149-157 (1998)
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 149-157
-
-
Apter, A.1
-
5
-
-
0036436503
-
Strong cardinals can be fully Laver indestructible
-
Apter, A.: Strong cardinals can be fully Laver indestructible. Math. Logic Quarterly 48, 499-507 (2002)
-
(2002)
Math. Logic Quarterly
, vol.48
, pp. 499-507
-
-
Apter, A.1
-
6
-
-
0003182294
-
Strong compactness, measurability, and the class of supercompact cardinals
-
Apter, A.: Strong compactness, measurability, and the class of supercompact cardinals. Fundamenta Mathematicae 167, 65-78 (2001)
-
(2001)
Fundamenta Mathematicae
, vol.167
, pp. 65-78
-
-
Apter, A.1
-
7
-
-
0035625707
-
Identity crises and strong compactness II: Strong cardinals
-
Apter, A., Cummings, J.: Identity crises and strong compactness II: Strong cardinals. Arch. Math. Logic 40, 25-38 (2001)
-
(2001)
Arch. Math. Logic
, vol.40
, pp. 25-38
-
-
Apter, A.1
Cummings, J.2
-
8
-
-
0032259405
-
The least measurable can be strongly compact and indestructible
-
Apter, A., Gitik, M.: The least measurable can be strongly compact and indestructible. J. Symbolic Logic 63, 1404-1412 (1998)
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 1404-1412
-
-
Apter, A.1
Gitik, M.2
-
9
-
-
0038814907
-
Exactly controlling the non-supercompact strongly compact cardinals
-
Apter, A., Hamkins, J.D.: Exactly controlling the non-supercompact strongly compact cardinals. To appear in the J. Symbolic Logic.
-
J. Symbolic Logic
-
-
Apter, A.1
Hamkins, J.D.2
-
10
-
-
0001294180
-
Universal indestructibility
-
Apter, A., Hamkins, J.D.: Universal indestructibility. Kobe J. Math. 16, 119-130 (1999)
-
(1999)
Kobe J. Math.
, vol.16
, pp. 119-130
-
-
Apter, A.1
Hamkins, J.D.2
-
11
-
-
35349000940
-
Forcing
-
J. Barwise, editor, North-Holland, Amsterdam
-
Burgess, J.: Forcing. In: J. Barwise, editor, Handbook of Mathematical Logic, North-Holland, Amsterdam, 403-452 (1977)
-
(1977)
Handbook of Mathematical Logic
, pp. 403-452
-
-
Burgess, J.1
-
12
-
-
84966200114
-
A model in which GCH holds at successors but fails at limits
-
Cummings, J.: A model in which GCH holds at successors but fails at limits. Trans. Amer. Math. Soc. 329, 1-39 (1992)
-
(1992)
Trans. Amer. Math. Soc.
, vol.329
, pp. 1-39
-
-
Cummings, J.1
-
13
-
-
0003158293
-
Comparison of the axioms of local and universal choice
-
Felgner, U.: Comparison of the axioms of local and universal choice. Fundamenta Mathematicae 71, 62-73 (1971)
-
(1971)
Fundamenta Mathematicae
, vol.71
, pp. 62-73
-
-
Felgner, U.1
-
14
-
-
0038157193
-
More saturated ideals
-
Cabal Seminar 79-81, Springer-Verlag, Berlin and New York
-
Foreman, M.: More saturated ideals. In: Cabal Seminar 79-81, Lecture Notes in Mathematics 1019, Springer-Verlag, Berlin and New York, 1-27 (1983)
-
(1983)
Lecture Notes in Mathematics
, vol.1019
, pp. 1-27
-
-
Foreman, M.1
-
15
-
-
51249180126
-
All uncountable cardinals can be singular
-
Gitik, M.: All uncountable cardinals can be singular. Israel J. Math. 35, 61-88 (1980)
-
(1980)
Israel J. Math.
, vol.35
, pp. 61-88
-
-
Gitik, M.1
-
16
-
-
0002847860
-
On certain indestructibility of strong cardinals and a question of Hajnal
-
Gitik, M., Shelah, S.: On certain indestructibility of strong cardinals and a question of Hajnal. Arch. Math. Logic 28, 35-42 (1989)
-
(1989)
Arch. Math. Logic
, vol.28
, pp. 35-42
-
-
Gitik, M.1
Shelah, S.2
-
18
-
-
0032562064
-
Destruction or preservation as you like it
-
Hamkins, J.D.: Destruction or preservation as you like it. Ann. Pure and Applied Logic 91, 191-229 (1998)
-
(1998)
Ann. Pure and Applied Logic
, vol.91
, pp. 191-229
-
-
Hamkins, J.D.1
-
19
-
-
0035652411
-
Gap forcing
-
Hamkins, J.D.: Gap forcing. Israel J. Math. 125, 237-252 (2001)
-
(2001)
Israel J. Math.
, vol.125
, pp. 237-252
-
-
Hamkins, J.D.1
-
20
-
-
0033469080
-
Gap forcing: Generalizing the Lévy-Solovay Theorem
-
Hamkins, J.D.: Gap forcing: Generalizing the Lévy-Solovay Theorem. Bull. Symbolic Logic 5, 264-272 (1999)
-
(1999)
Bull. Symbolic Logic
, vol.5
, pp. 264-272
-
-
Hamkins, J.D.1
-
22
-
-
0004178479
-
-
Springer-Verlag, Berlin and New York
-
Kanamori, A.: The higher infinite. Springer-Verlag, Berlin and New York (1994)
-
(1994)
The Higher Infinite
-
-
Kanamori, A.1
-
24
-
-
51249180514
-
Making the supercompactness of κ indestructible under κ-directed closed forcing
-
Laver, R.: Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math. 29, 385-388 (1978)
-
(1978)
Israel J. Math.
, vol.29
, pp. 385-388
-
-
Laver, R.1
-
25
-
-
84968496788
-
A proof of projective determinacy
-
Martin, D.A., Steel, J.: A proof of projective determinacy. J. Amer. Math. Soc. 2, 71-125 (1989)
-
(1989)
J. Amer. Math. Soc.
, vol.2
, pp. 71-125
-
-
Martin, D.A.1
Steel, J.2
-
26
-
-
0002160689
-
Strong axioms of infinity and elementary embeddings
-
Solovay, R., Reinhardt, W., Kanamori, A.: Strong axioms of infinity and elementary embeddings. Ann. Math. Logic 13, 73-116 (1978)
-
(1978)
Ann. Math. Logic
, vol.13
, pp. 73-116
-
-
Solovay, R.1
Reinhardt, W.2
Kanamori, A.3
|