-
1
-
-
23044531955
-
Aspects of strong compactness, measurability, and indestructibility
-
submitted
-
A. Apter, Aspects of strong compactness, measurability, and indestructibility, Arch. Math. Logic, submitted.
-
Arch. Math. Logic
-
-
Apter, A.1
-
2
-
-
0032396952
-
Laver indestructibility and the class of compact cardinals
-
_, Laver indestructibility and the class of compact cardinals, J. Symbolic Logic 63 (1998), 149-157.
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 149-157
-
-
-
3
-
-
0001528882
-
Patterns of compact cardinals
-
_, Patterns of compact cardinals, Ann. Pure Appl. Logic 89 (1997), 101-115.
-
(1997)
Ann. Pure Appl. Logic
, vol.89
, pp. 101-115
-
-
-
4
-
-
0032259405
-
The least measurable can be strongly compact and indestructible
-
A. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic 63 (1998), 1404-1412.
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 1404-1412
-
-
Apter, A.1
Gitik, M.2
-
5
-
-
0001294180
-
Universal indestructibility
-
A. Apter and J. D. Hamkins, Universal indestructibility, Kobe J. Math. 16 (1999), 119-130.
-
(1999)
Kobe J. Math.
, vol.16
, pp. 119-130
-
-
Apter, A.1
Hamkins, J.D.2
-
6
-
-
21744453877
-
Menas' result is best possible
-
A. Apter and S. Shelah, Menas' result is best possible, Trans. Amer. Math. Soc. 349 (1997), 2007-2034.
-
(1997)
Trans. Amer. Math. Soc.
, vol.349
, pp. 2007-2034
-
-
Apter, A.1
Shelah, S.2
-
7
-
-
84966200114
-
A model in which GCH holds at successors but fails at limits
-
J. Cummings, A model in which GCH holds at successors but fails at limits, ibid. 329 (1992), 1-39.
-
(1992)
Trans. Amer. Math. Soc.
, vol.329
, pp. 1-39
-
-
Cummings, J.1
-
8
-
-
0032562064
-
Destruction or preservation as you like it
-
J. D. Hamkins, Destruction or preservation as you like it, Ann. Pure Appl. Logic 91 (1998), 191-229.
-
(1998)
Ann. Pure Appl. Logic
, vol.91
, pp. 191-229
-
-
Hamkins, J.D.1
-
10
-
-
0033469080
-
Gap forcing: Generalizing the Lévy-Solovay theorem
-
_, Gap forcing: generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264-272.
-
(1999)
Bull. Symbolic Logic
, vol.5
, pp. 264-272
-
-
-
11
-
-
0032364840
-
Small forcing makes any cardinal superdestructible
-
_, Small forcing makes any cardinal superdestructible, J. Symbolic Logic 63 (1998), 51-58.
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 51-58
-
-
-
12
-
-
0034598580
-
The lottery preparation
-
_, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103-146.
-
(2000)
Ann. Pure Appl. Logic
, vol.101
, pp. 103-146
-
-
-
13
-
-
51249180514
-
Making the supercompactness of κ indestructible under κ-directed closed forcing
-
R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385-388.
-
(1978)
Israel J. Math.
, vol.29
, pp. 385-388
-
-
Laver, R.1
-
14
-
-
51249189487
-
Measurable cardinals and the continuum hypothesis
-
A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234-248.
-
(1967)
Israel J. Math.
, vol.5
, pp. 234-248
-
-
Lévy, A.1
Solovay, R.2
-
15
-
-
49549141110
-
On strong compactness and supercompactness
-
T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.
-
(1974)
Ann. Math. Logic
, vol.7
, pp. 327-359
-
-
Menas, T.1
|