-
1
-
-
0003796630
-
-
Academic Press, New York
-
Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
-
(1975)
Sobolev Spaces
-
-
Adams, R.A.1
-
2
-
-
84988168833
-
A remark on the regularity of solutions of Maxwell's equations on Lipschitz-domains
-
Costabel, M., 'A remark on the regularity of solutions of Maxwell's equations on Lipschitz-domains', Math. Meth. Appl. Sci., 12, 365-368 (1990).
-
(1990)
Math. Meth. Appl. Sci.
, vol.12
, pp. 365-368
-
-
Costabel, M.1
-
3
-
-
0022499052
-
On the basic equations for carrier transport in semiconductors
-
Gajewski, H. and Gröger, K., 'On the basic equations for carrier transport in semiconductors,' J. Math. Anal. Appl. 113, 12-35 (1989).
-
(1989)
J. Math. Anal. Appl.
, vol.113
, pp. 12-35
-
-
Gajewski, H.1
Gröger, K.2
-
4
-
-
0003616637
-
Singularites in boundary value problems
-
Springer, Berlin, New York, Paris
-
Grisvard, P., Singularites in Boundary Value Problems, Research Notes in Applied Mathematics RMA22, Springer, Berlin, New York, Paris, 1992.
-
(1992)
Research Notes in Applied Mathematics RMA22
-
-
Grisvard, P.1
-
5
-
-
0000120084
-
1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations
-
1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations', Math. Ann., 283, 679-687 (1989).
-
(1989)
Math. Ann.
, vol.283
, pp. 679-687
-
-
Gröger, K.1
-
6
-
-
0030589798
-
Existence of weak solutions of the drift diffusion model for semiconductors coupled with Maxwell's equations
-
Jochmann, F., 'Existence of weak solutions of the drift diffusion model for semiconductors coupled with Maxwell's equations', J. Math. Anal. Appl., 204, 655-676 (1996).
-
(1996)
J. Math. Anal. Appl.
, vol.204
, pp. 655-676
-
-
Jochmann, F.1
-
7
-
-
0000278438
-
q(Ω) involving mixed boundary conditions
-
q(Ω) involving mixed boundary conditions', Appl. Anal., 66, 189-203 (1997).
-
(1997)
Appl. Anal.
, vol.66
, pp. 189-203
-
-
Jochmann, F.1
-
8
-
-
0039402056
-
Uniqueness and regularity for the two dimensional drift diffusion model for semiconductors coupled with Maxwell's equations
-
Jochmann, F., 'Uniqueness and regularity for the two dimensional drift diffusion model for semiconductors coupled with Maxwell's equations', J. Differential Equations, 147, 242-270, (1998).
-
(1998)
J. Differential Equations
, vol.147
, pp. 242-270
-
-
Jochmann, F.1
-
9
-
-
0001473423
-
The semistatic limit for Maxwell's equations in an exterior domain
-
Jochmann, F., 'The semistatic limit for Maxwell's equations in an exterior domain', Comm. Partial Differential Equations, 23 (11-12), 2035-2076 (1998).
-
(1998)
Comm. Partial Differential Equations
, vol.23
, Issue.11-12
, pp. 2035-2076
-
-
Jochmann, F.1
-
12
-
-
0002407165
-
Weak solution theory for Maxwell's equations in the semistatic limit
-
Milani, A. and Picard, R., 'Weak Solution theory for Maxwell's equations in the Semistatic Limit', J. Math. Anal. Appl., 191, 77-100 (1995).
-
(1995)
J. Math. Anal. Appl.
, vol.191
, pp. 77-100
-
-
Milani, A.1
Picard, R.2
-
14
-
-
0001387055
-
An elementary proof for a compact imbedding result in generalized electromagnetic theory
-
Picard, R., 'An elementary proof for a compact imbedding result in generalized electromagnetic theory', Math. Z., 187, 151-161 (1984).
-
(1984)
Math. Z.
, vol.187
, pp. 151-161
-
-
Picard, R.1
-
15
-
-
0001239728
-
Second order elliptic equations with mixed boundary conditions
-
Pryde, A. J., 'Second order elliptic equations with mixed boundary conditions', J. Math. Anal. Appl., 80, 203-244 (1981).
-
(1981)
J. Math. Anal. Appl.
, vol.80
, pp. 203-244
-
-
Pryde, A.J.1
-
16
-
-
51649184864
-
Regularization of mixed second order elliptic problems
-
Shamir, E., 'Regularization of mixed second order elliptic problems', Israel J. Math., 6, 150-168 (1968).
-
(1968)
Israel J. Math.
, vol.6
, pp. 150-168
-
-
Shamir, E.1
-
18
-
-
0003882441
-
-
Johann Ambrosius Barth, Heidelberg
-
Triebel, H., Interpolation Theory, Functions Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 1990.
-
(1990)
Interpolation Theory, Functions Spaces, Differential Operators
-
-
Triebel, H.1
-
19
-
-
84979103896
-
A local compactness theorem for Maxwell's equations
-
Weber, C., 'A local compactness theorem for Maxwell's equations', Math. Meth. in the Appl. Sci. 2, 12-25 (1980).
-
(1980)
Math. Meth. in the Appl. Sci.
, vol.2
, pp. 12-25
-
-
Weber, C.1
|