-
2
-
-
0021468626
-
WISARD, a radical new step forward in image recognition
-
I. Aleksander, W. Thomas, and P. Bowden. WISARD, a radical new step forward in image recognition. Sensor Rev., 4(3):120-124, 1984.
-
(1984)
Sensor Rev.
, vol.4
, Issue.3
, pp. 120-124
-
-
Aleksander, I.1
Thomas, W.2
Bowden, P.3
-
3
-
-
0005040255
-
Multiple randomized classifiers: MRCL
-
Technical Report 446, Department of Statistics, University of Chicago
-
Y. Amit, G. Blanchard, and K. Wilder. Multiple randomized classifiers: MRCL. Technical Report 446, Department of Statistics, University of Chicago, 2000.
-
(2000)
-
-
Amit, Y.1
Blanchard, G.2
Wilder, K.3
-
4
-
-
0028461417
-
Automated learning of decision rules for text categorization
-
C. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text categorization. ACM Transactions on Information Systems, 12(3):233-251, 1994.
-
(1994)
ACM Transactions on Information Systems
, vol.12
, Issue.3
, pp. 233-251
-
-
Apté, C.1
Damerau, F.2
Weiss, S.M.3
-
6
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 24(2):5-32, 2001.
-
(2001)
Machine Learning
, vol.24
, Issue.2
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0034250160
-
An experimental comparison of three methods of constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods of constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2):337-374, 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
0031890971
-
The theoretical and experimental status of the N-tuple classifier
-
R. Rohwer and M. Morciniec. The theoretical and experimental status of the N-tuple classifier. Neural Networks, 11(1):1-14, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 1-14
-
-
Rohwer, R.1
Morciniec, M.2
-
16
-
-
0033905095
-
BoosTexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
20
-
-
25044445037
-
Parallelizing boosting and bagging
-
Technical Report 2001-442, Department of Computing and Information Science, Queen's University, Kingston, Canada
-
C. Yu and D. B. Skillicorn. Parallelizing boosting and bagging. Technical Report 2001-442, Department of Computing and Information Science, Queen's University, Kingston, Canada, 2001.
-
(2001)
-
-
Yu, C.1
Skillicorn, D.B.2
|