메뉴 건너뛰기




Volumn , Issue , 2002, Pages 307-313

Efficient handling of high-dimensional feature spaces by randomized classifier ensembles

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; LEARNING ALGORITHMS; MATHEMATICAL MODELS; RANDOM ACCESS STORAGE;

EID: 0242709384     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/775091.775093     Document Type: Conference Paper
Times cited : (9)

References (20)
  • 2
    • 0021468626 scopus 로고
    • WISARD, a radical new step forward in image recognition
    • I. Aleksander, W. Thomas, and P. Bowden. WISARD, a radical new step forward in image recognition. Sensor Rev., 4(3):120-124, 1984.
    • (1984) Sensor Rev. , vol.4 , Issue.3 , pp. 120-124
    • Aleksander, I.1    Thomas, W.2    Bowden, P.3
  • 3
    • 0005040255 scopus 로고    scopus 로고
    • Multiple randomized classifiers: MRCL
    • Technical Report 446, Department of Statistics, University of Chicago
    • Y. Amit, G. Blanchard, and K. Wilder. Multiple randomized classifiers: MRCL. Technical Report 446, Department of Statistics, University of Chicago, 2000.
    • (2000)
    • Amit, Y.1    Blanchard, G.2    Wilder, K.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 24(2):5-32, 2001.
    • (2001) Machine Learning , vol.24 , Issue.2 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods of constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods of constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2):337-374, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0031890971 scopus 로고    scopus 로고
    • The theoretical and experimental status of the N-tuple classifier
    • R. Rohwer and M. Morciniec. The theoretical and experimental status of the N-tuple classifier. Neural Networks, 11(1):1-14, 1998.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 1-14
    • Rohwer, R.1    Morciniec, M.2
  • 16
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 20
    • 25044445037 scopus 로고    scopus 로고
    • Parallelizing boosting and bagging
    • Technical Report 2001-442, Department of Computing and Information Science, Queen's University, Kingston, Canada
    • C. Yu and D. B. Skillicorn. Parallelizing boosting and bagging. Technical Report 2001-442, Department of Computing and Information Science, Queen's University, Kingston, Canada, 2001.
    • (2001)
    • Yu, C.1    Skillicorn, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.